skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamo Processes Constrained by Solar and Stellar Observations
Our understanding of stellar dynamos has largely been driven by the phenomena we have observed of our own Sun. Yet, as we amass longer-term datasets for an increasing number of stars, it is clear that there is a wide variety of stellar behavior. Here we briefly review observed trends that place key constraints on the fundamental dynamo operation of solar-type stars to fully convective M dwarfs, including: starspot and sunspot patterns, various magnetism-rotation correlations, and mean field flows such as differential rotation and meridional circulation. We also comment on the current insight that simulations of dynamo action and flux emergence lend to our working knowledge of stellar dynamo theory. While the growing landscape of both observations and simulations of stellar magnetic activity work in tandem to decipher dynamo action, there are still many puzzles that we have yet to fully understand.  more » « less
Award ID(s):
1701265
PAR ID:
10063255
Author(s) / Creator(s):
Date Published:
Journal Name:
Symposium - International Astronomical Union
ISSN:
0074-1809
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract There is an intricate relationship between the organization of large-scale magnetic fields by a stellar dynamo and the rate of angular momentum loss due to magnetized stellar winds. An essential ingredient for the operation of a large-scale dynamo is the Coriolis force, which imprints organizing flows on the global convective patterns and inhibits the complete cancellation of bipolar magnetic regions. Consequently, it is natural to expect a rotational threshold for large-scale dynamo action and for the efficient angular momentum loss that it mediates through magnetic braking. Here we present new observational constraints on magnetic braking for an evolutionary sequence of six early K-type stars. To determine the wind braking torque for each of our targets, we combine spectropolarimetric constraints on the large-scale magnetic field, Lyαor X-ray constraints on the mass-loss rate, as well as uniform estimates of the stellar rotation period, mass, and radius. As identified previously from similar observations of hotter stars, we find that the wind braking torque decreases abruptly by more than an order of magnitude at a critical value of the stellar Rossby number. Given that all of the stars in our sample exhibit clear activity cycles, we suggest that weakened magnetic braking may coincide with the operation of a subcritical stellar dynamo. 
    more » « less
  2. The evolution of magnetic braking and dynamo processes in subgiant stars is essential for understanding how these stars lose angular momentum. In this work, we investigate the magnetic braking and dynamo evolution of the G-type subgiant β Hyi to test the hypothesis of weakened magnetic braking and the potential rejuvenation of large-scale magnetic fields. We analyzed spectropolarimetric observations from the polarimetric mode of High Accuracy Radial velocity Planet Searcher (HARPSpol) and combined them with archival X-ray data and asteroseismic properties from Transiting Exoplanet Survey Satellite (TESS) to estimate the current wind-braking torque of β Hyi. Despite experiencing weakened magnetic braking during the second half of its main-sequence lifetime, our results indicate that β Hyi has regained significant magnetic activity and a large-scale magnetic field. This observation aligns with the “born-again” dynamo hypothesis. Furthermore, our estimated wind braking torque is considerably stronger than what would be expected for a star in the weakened magnetic braking regime. This suggests that subgiants with extended convective zones can temporarily re-establish large-scale dynamo action. These results provide critical constraints on stellar rotation models and improve our understanding of the interplay between magnetic field structure, stellar activity cycles, and angular momentum evolution in old solar-type stars. 
    more » « less
  3. Abstract Our understanding of large-scale magnetic fields in stellar radiative zones remains fragmented and incomplete. Such magnetic fields, which must be produced by some form of dynamo mechanism, are thought to dominate angular-momentum transport, making them crucial to stellar evolution. A major difficulty is the effect of stable stratification, which generally suppresses dynamo action. We explore the effects of stable stratification on mean-field dynamo theory with a particular focus on a non-helical large-scale dynamo (LSD) mechanism known as the magnetic shear-current effect. We find that the mechanism is robust to increasing stable stratification as long as the original requirements for its operation are met: a source of shear and non-helical magnetic fluctuations (e.g. from a small-scale dynamo). Both are plausibly sourced in the presence of differential rotation. Our idealized direct numerical simulations, supported by mean-field theory, demonstrate the generation of near equipartition large-scale toroidal fields. Additionally, a scan over magnetic Reynolds number shows no change in the growth or saturation of the LSD, providing good numerical evidence of a dynamo mechanism resilient to catastrophic quenching, which has been an issue for helical dynamos. These properties – the absence of catastrophic quenching and robustness to stable stratification – make the mechanism a plausible candidate for generating in situ large-scale magnetic fields in stellar radiative zones. 
    more » « less
  4. ABSTRACT In this paper, we use Hubble Space Telescope/WFC3 observations of six galaxies from the DYnamics of Newly Assembled Massive Object (DYNAMO) survey, combined with stellar population modelling of the SED, to determine the stellar masses of DYNAMO clumps. The DYNAMO sample has been shown to have properties similar to z ≈ 1.5 turbulent, clumpy discs. DYNAMO sample clump masses offer a useful comparison for studies of z > 1 in that the galaxies have the same properties, yet the observational biases are significantly different. Using DYNAMO, we can more easily probe rest-frame near-IR wavelengths and also probe finer spatial scales. We find that the stellar mass of DYNAMO clumps is typically 107−108M⊙. We employ a technique that makes non-parametric corrections in removal of light from nearby clumps, and carries out a locally determined disc subtraction. The process of disc subtraction is the dominant effect, and can alter clump masses at the 0.3 dex level. Using these masses, we investigate the stellar mass function (MF) of clumps in DYNAMO galaxies. DYNAMO stellar MFs follow a declining power law with slope α ≈ −1.4, which is slightly shallower than, but similar to what is observed in z > 1 lensed galaxies. We compare DYNAMO clump masses to results of simulations. The masses and galactocentric position of clumps in DYNAMO galaxies are more similar to long-lived clumps in simulations. Similar to recent DYNAMO results on the stellar population gradients, these results are consistent with simulations that do not employ strong ‘early’ radiative feedback prescriptions. 
    more » « less
  5. Abstract Weakened magnetic braking (WMB) was originally proposed in 2016 to explain anomalously rapid rotation in old field stars observed by the Kepler mission. The proximate cause was suggested to be a transition in magnetic morphology from larger to smaller spatial scales. In a series of papers over the past 5 yr, we have collected spectropolarimetric measurements to constrain the large-scale magnetic fields for a sample of stars spanning this transition, including a range of spectral types from late F to early K. During this time, we gradually improved our methods for estimating the wind braking torque in each of our targets, and for evaluating the associated uncertainties. Here, we reanalyze the entire sample with a focus on uniformity for the relevant observational inputs. We supplement the sample with two additional active stars to provide more context for the evolution of wind braking torque with stellar Rossby number (Ro). The results demonstrate unambiguously that standard spin-down models can reproduce the evolution of wind braking torque for active stars, but WMB is required to explain the subsequent abrupt decrease in torque as Ro approaches a critical value for dynamo excitation. This transition is seen in both the large-scale magnetic field and the X-ray luminosity, indicating weakened coronal heating. We interpret these transitions as evidence of a rotational threshold for the influence of Coriolis forces on global convective patterns and the resulting inefficiency of the global stellar dynamo. 
    more » « less