skip to main content

Title: Tunable optical properties and stability of lead free all inorganic perovskites (Cs 2 SnI x Cl 6−x )
Organic–inorganic hybrid lead-based perovskites experience significant environmental instability under ambient moist air and are not environmentally benign due to the usage of toxic Pb. Here, we report a new approach to synthesize lead-free all inorganic perovskites (Cs 2 SnI x Cl 6−x ) using hydriodic acid (HI) demonstrating greatly enhanced environmental stability and tunable optical properties by controlling the I − /Cl − ratios. Single phase perovskites can be achieved with a low iodine or chlorine content, and a phase separation occurs in the binary system with closer iodine and chlorine dopings. UV-vis diffuse reflectance and photoluminescence measurements reveal tunable band gaps of Cs 2 SnI x Cl 6−x perovskites from the UV to the infrared region. The mixed halide perovskite with a lower chloride content shows significantly higher photoluminescence intensity. The thermal stability of mixed halide all-inorganic perovskites is continuously improved as the Cl content increases. The synthesis of Sn-based perovskites with tunable optical properties and environmental stability represents one step further toward the realization of the stable lead-free all inorganic perovskites.
; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Materials Chemistry A
Page Range or eLocation-ID:
2577 to 2584
Sponsoring Org:
National Science Foundation
More Like this
  1. Halide perovskites, such as methylammonium lead halide perovskites (MAPbX3,X=I, Br, and Cl), are emerging as promising candidates for a wide range of optoelectronic applications, including solar cells, light-emitting diodes, and photodetectors, due to their superior optoelectronic properties. All-inorganic lead halide perovskitesCsPbX3are attracting a lot of attention because replacing the organic cations withCs+enhances the stability, and its halide-mixing derivatives offer broad bandgap tunability covering nearly the entire visible spectrum. However, there is evidence suggesting that the optical properties of mixed-halide perovskites are influenced by phase segregation under external stimuli, especially illumination, which may negatively impact the performance of optoelectronic devices. It is reported that the mixed-halide perovskites in forms of thin films and nanocrystals are segregated into a low-bandgap I-rich phase and a high-bandgap Br-rich phase. Herein, we present a critical review on the synthesis and basic properties of all-inorganic perovskites, phase-segregation phenomena, plausible mechanisms, and methods to mitigate phase segregation, providing insights on advancing mixed-halide perovskite optoelectronics with reliable performance.

  2. Lead-free perovskites and their analogues have been extensively studied as a class of next-generation luminescent and optoelectronic materials. Herein, we report the synthesis of new colloidal Cs 4 M( ii )Bi 2 Cl 12 (M( ii ) = Cd, Mn) nanocrystals (NCs) with unique luminescence properties. The obtained Cs 4 M( ii )Bi 2 Cl 12 NCs show a layered double perovskite (LDP) crystal structure with good particle stability. Density functional theory calculations show that both samples exhibit a wide, direct bandgap feature. Remarkably, the strong Mn–Mn coupling effect of the Cs 4 M( ii )Bi 2 Cl 12 NCs results in an ultra-short Mn photoluminescence (PL) decay lifetime of around 10 μs, around two orders of magnitude faster than commonly observed Mn 2+ dopant emission in NCs. Diluting the Mn 2+ ion concentration through forming Cs 4 (Cd 1−x Mn x )Bi 2 Cl 12 (0 < x < 1) alloyed LDP NCs leads to prolonged PL lifetimes and enhanced PL quantum yields. Our study provides the first synthetic example of Bi-based LDP colloidal NCs with potential for serving as a new category of stable lead-free perovskite-type materials for various applications.
  3. Yb 3+ -Doped lead-halide perovskites (Yb 3+ :CsPb(Cl 1−x Br x ) 3 ) have emerged as unique materials combining strong, tunable broadband absorption with near-infrared photoluminescence quantum yields (PLQYs) approaching 200% at ambient temperature. These remarkable properties make Yb 3+ :CsPb(Cl 1−x Br x ) 3 an extremely promising candidate for spectral shaping in high-efficiency photovoltaic devices. Previous theoretical assessments of such “downconversion” devices have predicted single-junction efficiencies up to 40%, but have been highly idealized. Real materials like Yb 3+ :CsPb(Cl 1−x Br x ) 3 have practical limitations such as constrained band-gap and PL energies, non-directional emission, and an excitation-power-dependent PLQY. Hence, it is unclear whether Yb 3+ :CsPb(Cl 1−x Br x ) 3 , or any other non-ideal quantum-cutting material, can indeed boost the efficiencies of real high-performance PV. Here, we examine the thermodynamic, detailed-balance efficiency limit of Yb 3+ :CsPb(Cl 1−x Br x ) 3 on different existing PV under real-world conditions. Among these, we identify silicon heterojunction technology as very promising for achieving significant performance gains when paired with Yb 3+ :CsPb(Cl 1−x Br x ) 3 , and we predict power-conversion efficiencies of up to 32% for this combination. Surprisingly, PL saturation doesmore »not negate the improved device performance. Calculations accounting for actual hourly incident solar photon fluxes show that Yb 3+ :CsPb(Cl 1−x Br x ) 3 boosts power-conversion efficiencies at all times of day and year in two representative geographic locations. Predicted annual energy yields are comparable to those of tandem perovskite-on-silicon technologies, but without the need for current matching, tracking, or additional electrodes and inverters. In addition, we show that band-gap optimization in real quantum cutters is inherently a function of their PLQY and the ability to capture that PL. These results provide key design rules needed for development of high-efficiency quantum-cutting photovoltaic devices based on Yb 3+ :CsPb(Cl 1−x Br x ) 3 .« less
  4. All-inorganic lead halide perovskites have been extensively studied in the past several years due to their superior stability against moisture, oxygen, light, and heat compared with their organic–inorganic counterparts. CsPbBr3 with suitable band gap and ultrahigh photoluminescence quantum yield is a promising candidate for pure green emitter in the backlighting display to fill the so-called “green gap.” Here, vapor-phase growth of CsPbBr3 microspheres is reported for highly efficient pure green light emission. The as-synthesized microspheres exhibit a stronger photoluminescence (PL) intensity with a photoluminescence quantum yield of 75% resulting from the lower energy of longitudinal optical phonons revealed by temperature dependent PL studies. Importantly, with the diameter increasing from 2 to 50 μm the PL peak positions of the microspheres can be readily tuned from 527 to 539 nm, well filling the so-called “green gap.” The red-shift with increasing diameter can be ascribed to the reabsorption process during the photon propagation inside the microspheres. The studies provide a route to improve the photoluminescence quantum yield in all-inorganic lead halide perovskites, but also suggest an alternative approach to achieve the pure green emission for the backlighting display.
  5. Zero-dimensional (0D) halides perovskites, in which anionic metal-halide octahedra (MX 6 ) 4− are separated by organic or inorganic countercations, have recently shown promise as excellent luminescent materials. However, the origin of the photoluminescence (PL) and, in particular, the different photophysical properties in hybrid organic–inorganic and all inorganic halides are still poorly understood. In this work, first-principles calculations were performed to study the excitons and intrinsic defects in 0D hybrid organic–inorganic halides (C 4 N 2 H 14 X) 4 SnX 6 (X = Br, I), which exhibit a high photoluminescence quantum efficiency (PLQE) at room temperature (RT), and also in the 0D inorganic halide Cs 4 PbBr 6 , which suffers from strong thermal quenching when T > 100 K. We show that the excitons in all three 0D halides are strongly bound and cannot be detrapped or dissociated at RT, which leads to immobile excitons in (C 4 N 2 H 14 X) 4 SnX 6 . However, the excitons in Cs 4 PbBr 6 can still migrate by tunneling, enabled by the resonant transfer of excitation energy (Dexter energy transfer). The exciton migration in Cs 4 PbBr 6 leads to a higher probability of trapping and nonradiativemore »recombination at the intrinsic defects. We show that a large Stokes shift and the negligible electronic coupling between luminescent centers are important for suppressing exciton migration; thereby, enhancing the photoluminescence quantum efficiency. Our results also suggest that the frequently observed bright green emission in Cs 4 PbBr 6 is not due to the exciton or defect-induced emission in Cs 4 PbBr 6 but rather the result of exciton emission from CsPbBr 3 inclusions trapped in Cs 4 PbBr 6 .« less