Quantum low-density parity-check (LDPC) codes are a promising family of quantum error-correcting codes for fault tolerant quantum computing with low overhead. Decoding quantum LDPC codes on quantum erasure channels has received more attention recently due to advances in erasure conversion for various types of qubits including neutral atoms, trapped ions, and superconducting qubits. Belief propagation with guided decimation (BPGD) decoding of quantum LDPC codes has demonstrated good performance in bit-flip and depolarizing noise. In this work, we apply BPGD decoding to quantum erasure channels. Using a natural modification, we show that BPGD offers competitive performance on quantum erasure channels for multiple families of quantum LDPC codes. Furthermore, we show that the performance of BPGD decoding on erasure channels can sometimes be improved significantly by either adding damping or adjusting the initial channel log-likelihood ratio for bits that are not erased. More generally, our results demonstrate BPGD is an effective general-purpose solution for erasure decoding across the quantum LDPC landscape.
more »
« less
Triangulation codes: a family of non-linear codes with graceful degradation
This paper introduces the notion of triangulation codes, a family of non-linear codes that 1) admit efficient encoding/decoding 2) their bit error rate deteriorates gracefully as the quality of the erasure channel degrades. Some coding theoretic properties of these codes are established. In the case of transmitting data over the erasure channel, it is shown that, even with sub-optimal decoding, they can achieve lower bit error rate than uncoded transmission for any number of received output symbols.
more »
« less
- Award ID(s):
- 1717842
- PAR ID:
- 10063528
- Date Published:
- Journal Name:
- 2018 Conf. Inform. Sciences and Syst. (CISS)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Error correction coding schemes with local-global decoding are motivated by practical data storage applications where a balance must be achieved between low latency read access and high data reliability. As an example, consider a 4KB codeword, consisting of four 1KB subblocks, that supports a local-global decoding architecture. Local decoding can provide reliable, low-latency access to individual 1KB subblocks under good channel conditions, while global decoding can provide a “safety-net” for recovery of the entire 4KB block when local decoding fails under bad channel conditions. Recently, Ram and Cassuto have proposed such local-global decoding architectures for LDPC codes and spatially coupled LDPC codes. In this paper, we investigate a coupled polar code architecture that supports both local and global decoding. The coupling scheme incorporates a systematic outer polar code and a partitioned mapping of the outer codeword to semipolarized bit-channels of the inner polar codes. Error rate simulation results are presented for 2 and 4 subblocks.more » « less
-
This paper explores list decoding of convolutional and polar codes for short messages such as those found in the 5G physical broadcast channel. A cyclic redundancy check (CRC) is used to select a codeword from a list of likely codewords. One example in the 5G standard encodes a 32-bit message with a 24-bit CRC and a 512-bit polar code with additional bits added by repetition to achieve a very low rate of 32/864. This paper shows that optimizing the CRC length improves the Eb/N0 performance of this polar code, where Eb/N0 is the ratio of the energy per data bit to the noise power spectral density. Furthermore, even better Eb/N0 performance is achieved by replacing the polar code with a tail-biting convolutional code (TBCC) with a distance-spectrum-optimal (DSO) CRC. This paper identifies the optimal CRC length to minimize the frame error rate (FER) of a rate-1/5 TBCC at a specific value of Eb/N0. We also show that this optimized TBCC/CRC can attain the same excellent Eb/N0 performance with the very low rate of 32/864 of the 5G polar code, where the low rate is achieved through repetition. We show that the proposed TBCC/CRC concatenated code outperforms the PBCH polar code described in the 5G standard both in terms of FER and decoding run time. We also explore the tradeoff between undetected error rate and erasure rate as the CRC size varies.more » « less
-
Reed–Muller (RM) codes exhibit good performance under maximum-likelihood (ML) decoding due to their highly- symmetric structure. In this paper, we explore the question of whether the code symmetry of RM codes can also be exploited to achieve near-ML performance in practice. The main idea is to apply iterative decoding to a highly-redundant parity-check (PC) matrix that contains only the minimum-weight dual codewords as rows. As examples, we consider the peeling decoder for the binary erasure channel, linear-programming and belief propagation (BP) decoding for the binary-input additive white Gaussian noise channel, and bit-flipping and BP decoding for the binary symmetric channel. For short block lengths, it is shown that near-ML performance can indeed be achieved in many cases. We also propose a method to tailor the PC matrix to the received observation by selecting only a small fraction of useful minimum-weight PCs before decoding begins. This allows one to both improve performance and significantly reduce complexity compared to using the full set of minimum-weight PCs.more » « less
-
The new 5G communications standard increases data rates and supports low-latency communication that places constraints on the computational complexity of channel decoders. 5G low-density parity-check (LDPC) codes have the so-called protograph-based raptor-like (PBRL) structure which offers inherent rate-compatibility and excellent performance. Practical LDPC decoder implementations use message-passing decoding with finite precision, which becomes coarse as complexity is more severely constrained. Performance degrades as the precision becomes more coarse. Recently, the information bottleneck (IB) method was used to design mutual-information-maximizing lookup tables that replace conventional finite-precision node computations. The IB approach exchanges messages represented by integers with very small bit width. This paper extends the IB principle to the flexible class of PBRL LDPC codes as standardized in 5G. The extensions include puncturing and rate-compatible IB decoder design. As an example of the new approach, a 4-bit information bottleneck decoder is evaluated for PBRL LDPC codes over a typical range of rates. Frame error rate simulations show that the proposed scheme outperforms offset min-sum decoding algorithms and operates very close to double-precision sum-product belief propagation decoding.more » « less
An official website of the United States government

