skip to main content


Title: Global snow zone maps and trends in snow persistence 2001-2016
NSF-PAR ID:
10063732
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Climatology
Volume:
38
Issue:
12
ISSN:
0899-8418
Page Range / eLocation ID:
4369 to 4383
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We present a simple method that allows snow depth measurements tobe converted to snow water equivalent (SWE) estimates. These estimates areuseful to individuals interested in water resources, ecological function,and avalanche forecasting. They can also be assimilated into models to helpimprove predictions of total water volumes over large regions. Theconversion of depth to SWE is particularly valuable since snow depthmeasurements are far more numerous than costlier and more complex SWEmeasurements. Our model regresses SWE against snow depth (h), day of wateryear (DOY) and climatological (30-year normal) values for winter (December,January, February) precipitation (PPTWT), and the difference (TD) between meantemperature of the warmest month and mean temperature of the coldest month,producing a power-law relationship. Relying on climatological normals ratherthan weather data for a given year allows our model to be applied atmeasurement sites lacking a weather station. Separate equations are obtainedfor the accumulation and the ablation phases of the snowpack. The model isvalidated against a large database of snow pillow measurements and yields abias in SWE of less than 2 mm and a root-mean-squared error (RMSE) in SWE ofless than 60 mm. The model is additionally validated against two completelyindependent sets of data: one from western North America and one from thenortheastern United States. Finally, the results are compared with three othermodels for bulk density that have varying degrees of complexity and thatwere built in multiple geographic regions. The results show that the modeldescribed in this paper has the best performance for the validation datasets. 
    more » « less
  2. Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents the snow depths, black and white ice thickness, and Secchi depths during the period of ice cover each winter. 
    more » « less
  3. The increasing prevalence of low snow conditions in a warming climate has attracted substantial attention in recent years, but a focus exclusively on low snow leaves high snow years relatively underexplored. However, these large snow years are hydrologically and economically important in regions where snow is critical for water resources. Here, we introduce the term “snow deluge” and use anomalously high snowpack in California’s Sierra Nevada during the 2023 water year as a case study. Snow monitoring sites across the state had a median 41 y return interval for April 1 snow water equivalent (SWE). Similarly, a process-based snow model showed a 54 y return interval for statewide April 1 SWE (90% CI: 38 to 109 y). While snow droughts can result from either warm or dry conditions, snow deluges require both cool and wet conditions. Relative to the last century, cool-season temperature and precipitation during California’s 2023 snow deluge were both moderately anomalous, while temperature was highly anomalous relative to recent climatology. Downscaled climate models in the Shared Socioeconomic Pathway-370 scenario indicate that California snow deluges—which we define as the 20 y April 1 SWE event—are projected to decline with climate change (58% decline by late century), although less so than median snow years (73% decline by late century). This pattern occurs across the western United States. Changes to snow deluge, and discrepancies between snow deluge and median snow year changes, could impact water resources and ecosystems. Understanding these changes is therefore critical to appropriate climate adaptation.

     
    more » « less