Abstract The T1of a hyperpolarized site in solution is a key parameter that determines the time‐window in which its NMR signals are observable. For13C sites adjacent to protons,1H‐decoupling has been shown to increase the hyperpolarized signal resolution and SNR. Additionally, polarization transfer to protons has shown utility in increasing the sensitivity of detection. However,1H‐decoupling could lead to a change in the decay rate of a hyperpolarized13C site. Here we tested this possible effect in a case where the protons are directly bound to an sp3hyperpolarized13C site (using [1,2‐13C2]choline) and1H‐decoupling was applied continuously throughout the hyperpolarized decay measurement. We found that1H‐decoupling did not lead to any significant changes in the13C polarization decay time but did result in the expected collapse of J‐coupling and produced sharper signals. This result suggested that1H‐decoupling did not affect the decay rate of hyperpolarized sp3 13C sites. The deuterium‐substitution approach (using [1,1,2,2‐D4,1‐13C]choline) showed a dramatic prolongation of T1. Upper bounds on the T1of all investigated sites were calculated.
more »
« less
Enhancing the resolution of 1 H and 13 C solid-state NMR spectra by reduction of anisotropic bulk magnetic susceptibility broadening
We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1 H and 13 C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1 H– 13 C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1 H and 13 C solid-state NMR spectra obtained from 2D 1 H– 13 C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13 C/ 1 H linewidth to the homogeneous 1 H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1 H– 13 C HETCOR NMR spectra. 2D 1 H– 13 C HETCOR experiments were applied to resolve and partially assign the NMR signals of the form I and form II polymorphs of aspirin in a sample containing both forms. These findings have important implications for ultra-high field NMR experiments, optimization of decoupling schemes and assessment of the fundamental limits on the resolution of solid-state NMR spectra.
more »
« less
- PAR ID:
- 10063751
- Date Published:
- Journal Name:
- Phys. Chem. Chem. Phys.
- Volume:
- 19
- Issue:
- 41
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 28153 to 28162
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Solid‐state NMR measurements coupled with density functional theory (DFT) calculations demonstrate how hydrogen positions can be refined in a crystalline system. The precision afforded by rotational‐echo double‐resonance (REDOR) NMR to interrogate13C–1H distances is exploited along with DFT determinations of the13C tensor of carbonates (CO32−). Nearby1H nuclei perturb the axial symmetry of the carbonate sites in the hydrated carbonate mineral, hydromagnesite [4 MgCO3⋅Mg(OH)2⋅4 H2O]. A match between the calculated structure and solid‐state NMR was found by testing multiple semi‐local and dispersion‐corrected DFT functionals and applying them to optimize atom positions, starting from X‐ray diffraction (XRD)‐determined atomic coordinates. This was validated by comparing calculated to experimental13C{1H} REDOR and13C chemical shift anisotropy (CSA) tensor values. The results show that the combination of solid‐state NMR, XRD, and DFT can improve structure refinement for hydrated materials.more » « less
-
The formation of lead carboxylates (lead soaps) has been identified as the cause of deterioration of hundreds of oil paintings. Soaps form when heavy metal-containing pigments, for example lead white and lead-tin yellow, react with saturated fatty acids in the oil medium. Understanding the mechanism of the reactions requires chemical information, which can be obtained with solid-state 207Pb, 119Sn and 13C NMR spectroscopy. Using the chemical-shift tensors determined by solid-state NMR we can gain structural insights on the coordination environment of the lead carboxylates and identify and quantify components in a paint film mixture. We have examined the spectroscopy of lead-containing pigments, lead carboxylates, and model paint films that were subjected to accelerated aging. We have also begun to investigate the dynamics of soap formation by 13C NMR spectroscopy. The NMR methods applied to the model paint systems could also be applied to other lead-containing materials.more » « less
-
Abstract We investigate the optical lifetime, decay characteristics, spectral linewidth and energy level properties of thulium ions doped in a KY(WO ) crystal at 4 K temperature. High doping concentration of thulium ions with inhomogeneous broadening allow us to study nonradiative behaviors, instantaneous spectral diffusion, and spectral power broadening in this solid-state material. The theoretical consideration of ion–ion interactions is shown to accurately characterize the absorption, decay and other spectral behaviors of Tm ions. We observe more than ten-fold reduction in the decay time of3H4state and about three-fold reduction in the spectral-hole lifetime as we approach the center of the inhomogeneous broadening, corresponding to higher optical densities.more » « less
-
NMR pulse sequences visualizing 1 J CC and n J CC bond connectivity via an intermediate state of 13 C– 13 C double-quantum coherence and 1 H detection are an indispensable tool to solve small-molecule structures at the natural abundance level of 13 C. A longstanding issue with these experiments set up to display 2D spectra with single-quantum frequencies is that in addition to the 1 H– 13 C– 13 C correlations of interest, appearance of HSQC-type artifacts can complicate analysis and obscure J CC connectivities. The origin of these artifacts is described and remedies for their suppression are introduced. They include refocusing of 1 J CH couplings prior to creation of 13 C– 13 C double-quantum coherence, which is known to enhance sensitivity by reducing loss into zero-quantum coherence for pairs of two protonated 13 C.more » « less
An official website of the United States government

