Water splitting has been widely considered to be an efficient way to generate sustainable and renewable energy resources in fuel cells, metal–air batteries and other energy conversion devices. Exploring efficient electrocatalysts to expedite the anodic oxygen evolution reaction (OER) is a crucial task that needs to be addressed in order to boost the practical application of water splitting. Intensive efforts have been devoted to develop mixed transition metal based chalcogenides as effective OER electrocatalysts. Herein, we have reported synthesis of a series of mixed metal selenides containing Co, Ni and Cu employing combinatorial electrodeposition, and systematically investigated how the transitionmore »
(Invited Talk): Designing smart materials for efficient energy conversion: The story of transition metal chalcogenides
Energy harvesting from solar and water has created ripples in materials energy research for the last several decades, complemented by the rise of Hydrogen as a clean fuel. Among these, water electrolysis leading to generation of oxygen and hydrogen, has been one of the most promising routes towards sustainable alternative energy generation and storage, with applications ranging from metal-air batteries, fuel cells, to solar-to-fuel energy conversion systems. In fact, solar water splitting is one of the most promising method to produce Hydrogen without depleting fossil-fuel based natural resources. However, the efficiency and practical feasibility of water electrolysis is limited by the anodic oxygen evolution reaction (OER), which is a kinetically sluggish, electron-intensive uphill reaction. A slow OER process also slows the other half- cell reaction, i.e. the hydrogen evolution reaction (HER) at the cathode. Hence, designing efficient catalysts for OER process from earth-abundant resources has been one of the primary concerns for advancing solar water splitting. In the Nath group we have focused on transition metal chalcogenides as efficient OER electrocatalysts. We have proposed the idea that these chalcogenides, specifically, selenides and tellurides will show much better OER catalytic activity due to increasing covalency around the catalytically active transition metal more »
- Award ID(s):
- 1710313
- Publication Date:
- NSF-PAR ID:
- 10064216
- Journal Name:
- 255th ACS National Meeting & Exposition, New Orleans, LA, United States, March 18-22, 2018 (2018), ENFL-330
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Designing efficient electrocatalysts has been one of the primary goals for water electrolysis, which is one of the most promising routes towards sustainable energy generation from renewable sources. In this article, we have tried to expand the family of transition metal chalcogenide based highly efficient OER electrocatalysts by investigating nickel telluride, Ni 3 Te 2 as a catalyst for the first time. Interestingly Ni 3 Te 2 electrodeposited on a GC electrode showed very low onset potential and overpotential at 10 mA cm −2 (180 mV), which is the lowest in the series of chalcogenides with similar stoichiometry, Ni 3more »
-
The two polymorphs of lithium cobalt oxide, LiCoO 2 , present an opportunity to contrast the structural requirements for reversible charge storage (battery function) vs. catalysis of water oxidation/oxygen evolution (OER; 2H 2 O → O 2 + 4H + + 4e − ). Previously, we reported high OER electrocatalytic activity from nanocrystals of the cubic phase vs. poor activity from the layered phase – the archetypal lithium-ion battery cathode. Here we apply transmission electron microscopy, electron diffraction, voltammetry and elemental analysis under OER electrolysis conditions to show that labile Li + ions partially deintercalate from layered LiCoO 2 ,more »
-
Solar water splitting using photoelectrochemical cells (PEC's) is a promising pathway toward clean and sustainable storage of renewable energy. Practical realization of solar-driven synthesis of hydrogen and oxygen integrating light absorption and electrolysis of water has been challenging because of (1) the limited stability of good photovoltaic materials under the required electrochemical conditions, and (2) photovoltaic efficiency losses due to light absorption by catalysts, the electrolyte, and generated bubbles, or reflection at their various interfaces. Herein, we evaluate a novel integrated solar water splitting architecture using efficient silicon heterojunction photovoltaic cells that avoids such losses and exhibits a solar-to-hydrogen (STH)more »
-
Electrochemical water splitting produces clean hydrogen fuel as one of the pivotal alternative energies to fossil fuels in the near future. However, the anodic oxygen evolution reaction (OER) is a significant bottleneck that curtails large-scale applications of electrochemical water splitting technology, owing to its sluggish reaction kinetics. In the past few decades, various methods have been proposed to improve the OER kinetics. Among them, doping is a simple and efficient method to mold the OER kinetics of a catalyst by incorporating different or hetero atoms into the host lattice. These efforts are vital to design highly efficient OER catalysts formore »