Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments.
more »
« less
Variational Pictures
Diagrams and pictures are a powerful medium to communicate ideas, designs, and art. However, authors of pictures are forced to use rudimentary and ad hoc techniques in managing multiple variants of their creations, such as copying and renaming files or abusing layers in an advanced graphical editing tool. We propose a model of variational pictures as a basis for the design of editors and other tools for managing variation in pictures. This model enjoys a number of theoretical properties that support exploratory graphical design and can help systematize picture creators' workflows.
more »
« less
- Award ID(s):
- 1717300
- PAR ID:
- 10064368
- Date Published:
- Journal Name:
- Int. Conf. on the Theory and Application of Diagrams
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Picture-naming tasks provide critical data for theories of lexical representation and retrieval and have been performed successfully in sign languages. However, the specific influences of lexical or phonological factors and stimulus properties on sign retrieval are poorly understood. To examine lexical retrieval in American Sign Language (ASL), we conducted a timed picture-naming study using 524 pictures (272 objects and 251 actions). We also compared ASL naming with previous data for spoken English for a subset of 425 pictures. Deaf ASL signers named object pictures faster and more consistently than action pictures, as previously reported for English speakers. Lexical frequency, iconicity, better name agreement, and lower phonological complexity each facilitated naming reaction times (RT)s. RTs were also faster for pictures named with shorter signs (measured by average response duration). Target name agreement was higher for pictures with more iconic and shorter ASL names. The visual complexity of pictures slowed RTs and decreased target name agreement. RTs and target name agreement were correlated for ASL and English, but agreement was lower for ASL, possibly due to the English bias of the pictures. RTs were faster for ASL, which we attributed to a smaller lexicon. Overall, the results suggest that models of lexical retrieval developed for spoken languages can be adopted for signed languages, with the exception that iconicity should be included as a factor. The open-source picture-naming data set for ASL serves as an important, first-of-its-kind resource for researchers, educators, or clinicians for a variety of research, instructional, or assessment purposes.more » « less
-
The manuscript considers multivariate functional data analysis with a known graphical model among the functional variables representing their conditional relationships (e.g., brain region-level fMRI data with a prespecified connectivity graph among brain regions). Functional Gaussian graphical models (GGM) used for analyzing multivariate functional data customarily estimate an unknown graphical model, and cannot preserve knowledge of a given graph. We propose a method for multivariate functional analysis that exactly conforms to a given inter-variable graph. We first show the equivalence between partially separable functional GGM and graphical Gaussian processes (GP), proposed recently for constructing optimal multivariate covariance functions that retain a given graphical model. The theoretical connection helps to design a new algorithm that leverages Dempster’s covariance selection for obtaining the maximum likelihood estimate of the covariance function for multivariate functional data under graphical constraints. We also show that the finite term truncation of functional GGM basis expansion used in practice is equivalent to a low-rank graphical GP, which is known to oversmooth marginal distributions. To remedy this, we extend our algorithm to better preserve marginal distributions while respecting the graph and retaining computational scalability. The benefits of the proposed algorithms are illustrated using empirical experiments and a neuroimaging application.more » « less
-
The International Affective Picture System (IAPS) contains 1,182 well-characterized photographs depicting natural scenes varying in affective content. These pictures are used extensively in affective neuroscience to investigate the neural correlates of emotional processing. Recently, in an effort to augment this dataset, we have begun to generate synthetic emotional images by combining IAPS pictures and diffusion-based AI models. The goal of this study is to compare the neural responses to IAPS pictures and matching AI-generated images. The stimulus set consisted of 60 IAPS pictures (20 pleasant, 20 neutral, 20 unpleasant) and 60 matching AI-generated images (20 pleasant, 20 neutral, 20 unpleasant). In a recording session, a total of 30 IAPS pictures and 30 matching AI-generated images were presented in random order, where each image was displayed for 3 seconds with neighboring images being separated by an interval of 2.8 to 3.5 seconds. Each experiment consisted of 10 recording sessions. The fMRI data was recorded on a 3T Siemens Prisma scanner. Pupil responses to image presentation were monitored using an MRI-compatible eyetracker. Our preliminary analysis of the fMRI data (N=3) showed that IAPS pictures and matching AI-generated images evoked similar neural responses in the visual cortex. In particular, MVPA (Multivariate Pattern Analysis) classifiers built to decode emotional categories from neural responses to IAPS pictures can be used to decode emotional categories from neural responses to AI-generated images and vice versa. Efforts to confirm these findings are underway by recruiting additional participants. Analysis is also being expanded to include the comparison of such measures as functional connectivity and pupillometry.more » « less
-
In many structured prediction problems, complex relationships between variables are compactly defined using graphical structures. The most prevalent graphical prediction methods---probabilistic graphical models and large margin methods---have their own distinct strengths but also possess significant drawbacks. Conditional random fields (CRFs) are Fisher consistent, but they do not permit integration of customized loss metrics into their learning process. Large-margin models, such as structured support vector machines (SSVMs), have the flexibility to incorporate customized loss metrics, but lack Fisher consistency guarantees. We present adversarial graphical models (AGM), a distributionally robust approach for constructing a predictor that performs robustly for a class of data distributions defined using a graphical structure. Our approach enjoys both the flexibility of incorporating customized loss metrics into its design as well as the statistical guarantee of Fisher consistency. We present exact learning and prediction algorithms for AGM with time complexity similar to existing graphical models and show the practical benefits of our approach with experiments.more » « less
An official website of the United States government

