skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope: QUANTUM DIAMOND MICROSCOPE
Award ID(s):
1647504
PAR ID:
10064405
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
18
Issue:
8
ISSN:
1525-2027
Page Range / eLocation ID:
3254 to 3267
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Interest in magnetic fields on the ancient Earth and other planetary bodies has motivated the paleomagnetic analysis of complex rocks such as meteorites that carry heterogeneous magnetizations at <<1 mm scales. The net magnetic moment of natural remanent magnetization (NRM) in such small samples is often below the detection threshold of common cryogenic magnetometers. The quantum diamond microscope (QDM) is an emerging magnetic imaging technology with ~1 μm resolution and can, in principle, recover magnetizations as weak as 10−17 Am2. However, the typically 1–100 μm sample‐to‐sensor distance of QDM measurements can result in complex (nondipolar) magnetic field maps, from which the net magnetic moment cannot be determined using a simple algorithm. Here we generate synthetic magnetic field maps to quantify the errors introduced by sample nondipolarity and by map processing procedures such as upward continuation. We find that inversions based on least squares dipole fits of upward continued data can recover the net moment of complex samples with <5% to 10% error for maps with signal‐to‐noise ratio (SNR) in the range typical of current generation QDMs. We validate these error estimates experimentally using comparisons between QDM maps and between QDM and SQUID microscope data, concluding that, within the limitations described here, the QDM is a robust technique for recovering the net magnetic moment of weakly magnetized samples. More sophisticated net moment fitting algorithms in the future can be combined with upward continuation methods described here to improve accuracy. 
    more » « less
  2. The nitrogen-vacancy (NV) center in diamond is an increasingly popular quantum sensor for microscopy of electrical current, magnetization, and spins. However, efficient NV–sample integration with a robust, high-quality interface remains an outstanding challenge to realize scalable, high-throughput microscopy. In this work, we characterize a diamond micro-chip (DMC) containing a (111)-oriented NV ensemble and demonstrate its utility for high-resolution quantum microscopy. We perform strain imaging of the DMC and find minimal detrimental strain variation across a field of view of tens of micrometer. We find good ensemble NV spin coherence and optical properties in the DMC, suitable for sensitive magnetometry. We then use the DMC to demonstrate wide-field microscopy of electrical current and show that diffraction-limited quantum microscopy can be achieved. We also demonstrate the deterministic transfer of DMCs with multiple materials of interest for next-generation electronics and spintronics. Lastly, we develop a polymer-based technique for DMC placement. This work establishes the DMC's potential to expand the application of NV quantum microscopy in materials, device, geological, biomedical, and chemical sciences. 
    more » « less
  3. Simultaneous measurements of two nitrogen vacancy centers in diamond enables spatiotemporal magnetometry. 
    more » « less