skip to main content


Title: A Transparent Membrane for Active Noise Cancelation
Abstract

A method for active noise cancelation that uses an optically transparent membrane is described. The membrane consists of a prestretched hydrophobic elastomer, attached to a rigid frame and sandwiched between two hydrogels swollen with an aqueous solution of salt. The elastomer functions as a dielectric, and the hydrogel functions as an ionic conductor. When the two hydrogels are subjected to a sinusoidal voltage, the membrane generates sound. A linear model for the reflection, transmission, and generation of sound by the membrane in an impedance tube is presented and validated. Active noise cancelation is demonstrated using the linear model and feedforward control. Compared to passive sound absorption, the sound transmission loss across the membrane is improved with active control from an average value of 7 dB to an average value of 16 dB. The transparent membrane may be used to cancel noises through a window, while maintaining its transparency.

 
more » « less
NSF-PAR ID:
10064433
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
28
Issue:
29
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Whether intentionally generating acoustic waves or attempting to mitigate unwanted noise, sound control is an area of challenge and opportunity. This study investigates traditional fabrics as emitters and suppressors of sound. When attached to a single strand of a piezoelectric fiber actuator, a silk fabric emits up to 70 dB of sound. Despite the complex fabric structure, vibrometer measurements reveal behavior reminiscent of a classical thin plate. Fabric pore size relative to the viscous boundary layer thickness is found—through comparative fabric analysis—to influence acoustic‐emission efficiency. Sound suppression is demonstrated using two distinct mechanisms. In the first, direct acoustic interference is shown to reduce sound by up to 37 dB. The second relies on pacifying the fabric vibrations by the piezoelectric fiber, reducing the amplitude of vibration waves by 95% and attenuating the transmitted sound by up to 75%. Interestingly, this vibration‐mediated suppression in principle reduces sound in an unlimited volume. It also allows the acoustic reflectivity of the fabric to be dynamically controlled, increasing by up to 68%. The sound emission and suppression efficiency of a 130 µm silk fabric presents opportunities for sound control in a variety of applications ranging from apparel to transportation to architecture.

     
    more » « less
  2. A new reference-spur cancelation technique is presented for supply-regulated ring-oscillator-based integer-N phaselocked loops (PLLs). A passive RC filter is used to implement a feed-forward (FF) spur-coupling path to perform spur cancelation at the PLL control signal. The proposed technique achieves a simulated spur cancelation of about 22 dB at the first spur harmonic. The simulated postcancelation spur value is -79 dBc for an oscillator gain of 0.1 GHz/V and -46 dBc for an oscillator gain of 6 GHz/V. Spur cancelation is also robust against large process, voltage, and temperature variations in the gain and bandwidth of the FF path. A 1-GHz integerN PLL prototype in a 65-nm CMOS process has a measured cancelation of 19.5 and 13 dB at the first and the second spur harmonic, respectively, with 320 μW of total power consumption. The PLL prototype has an oscillator gain of 1.5 GHz/V, which results in a postcancelation spur of -53 dBc. The proposed zero-power technique is suitable for low-power PLLs as it achieves a large spur cancelation without requiring any additional power consumption or calibration. 
    more » « less
  3. The existing concepts of non-reciprocity in propagation of acoustic or elastic waves are based either on nonlinear effects, or on local circulation of linear elastic fluid that leads to red or blue Doppler shift, depending on the direction of sound wave. The same concepts exist for electromagnetic non-reciprocity, where external magnetic field may produce the effect similar to local rotation of the medium. These two concepts originate from two known methods of breaking a time-reversal symmetry (T-symmetry), that is necessary for observation of nonreciprocal wave propagation. Both concepts require additional electrical or mechanical devices to be installed with their own power sources. Here we propose to explore viscosity of fluid as a natural factor of the T-symmetry breaking through energy dissipation. We report experimental observation of the nonreciprocal transmission of ultrasound through a water-submerged phononic crystals consisting of several layers of aluminum rods arranged in a square lattice. While viscous losses break the T-symmetry, making the wave propagation thermodynamically irreversible, the transmission remains reciprocal if the scatterers are symmetrical. To generate different energy losses for opposite directions of propagation, the P-symmetry of the crystal is broken by using asymmetric scatterers. Due to asymmetry, two sound waves propagating in the opposite directions produce different distributions of velocity and pressure that leads to different local absorption. Dissipation of acoustic energy occurs mostly near the surface of the scatterers and it strongly depends on surface roughnesses. Using two phononic crystal with smooth and rough aluminum rods we demonstrate low (2-5 dB) and high (10-15 dB) level of non-reciprocity within a wide range of frequencies, 300-600 kHz. Experimental results are in agreement with numerical simulations based on the Navier-Stokes equation. This nonreciprocal linear device is very cheap, robust and does not require energy source. 
    more » « less
  4. Abstract

    Most soft actuators with multiple active degrees of freedom do not take advantage of the full extensibility of elastomer. Here we introduce a technique for better utilizing this extensibility for more versatile soft actuators. Embedded tendons that slide through channels within an inflatable, fiber-reinforced elastomer membrane enable active control of the membrane’s geometry at high elastomer stretches, bringing its functionality close to that of a natural hydrostatic skeleton. We demonstrate this using an initially planar, tendon-driven, fiber-reinforced membrane actuator with a single fluid cavity that can actively extend, contract, bend in multiple directions, and grasp when inflated. Most notably, the same membrane stretches to nearly three times its initial length directly along the path of a sliding tendon while performing these motions. Two such membranes are used on a robotic platform to walk with the gait of a velvet worm using a fixed mass of air, turn, climb a ramp, and navigate uneven terrain.

     
    more » « less
  5. Marine crustaceans produce broadband sounds that are useful for passive acoustic monitoring to support conservation and management efforts. However, the propagation characteristics and detection ranges of their signals are poorly known, limiting our leveraging of these sounds. Here, we used a four-hydrophone linear array to measure source levels (SLs) and sound propagation from Caribbean spiny lobsters (Panulirus argus) of a wide range of sizes within a natural, shallow water habitat (3.3 m depth). Source level in peak-peak (SLpp) varied with body size; larger individuals produced SLpp up to 166 dB re 1 μPa. However, transmission losses (TL) were similar across all sizes, with a global fitted TL of 12.1 dB. Correspondingly, calculated detection ranges varied with body size, ranging between 14 and 364 m for small and large individuals (respectively). This increased up to 1612 m for large spiny lobsters when considering lower ambient noise levels. Despite the potential ease of tank studies, our results highlight the importance of empirical in situ sound propagation studies for marine crustaceans. Given the important ecological and economic role of spiny lobsters, these data are a key step to supporting remote monitoring of this species for fisheries management and efforts to acoustically quantify coral reefs' health. 
    more » « less