skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Response to Comments on “Designing river flows to improve food security futures in the Lower Mekong Basin”
Sabo et al. presented an empirically derived algorithm defining the socioecological response of the Tonle Sap Dai fishery in the Cambodian Mekong to basin-scale variation in hydrologic flow regime. Williams suggests that the analysis leading to the algorithm is flawed because of the large distance between the gauge used to measure water levels (hydrology) and the site of harvest for the fishery. Halls and Moyle argue that Sabo et al.’s findings are well known and contend that the algorithm is not a comprehensive assessment of sustainability. We argue that Williams’ critique stems from a misunderstanding about our analysis; further clarification of the analysis is provided. We regret not citing more of the work indicated by Halls and Moyle, yet we note that our empirical analysis provides additional new insights into Mekong flow-fishery relationships.  more » « less
Award ID(s):
1740042
PAR ID:
10064476
Author(s) / Creator(s):
Date Published:
Journal Name:
Science
Volume:
361
Issue:
6398
ISSN:
1095-9203
Page Range / eLocation ID:
eaat1477
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Williams et al . claim that the data used in Sabo et al . were improperly scaled to account for fishing effort, thereby invalidating the analysis. Here, we reanalyze the data rescaled per Williams et al . and following the methods in Sabo et al . Our original conclusions are robust to rescaling, thereby invalidating the assertion that our original analysis is invalid. 
    more » « less
  2. null (Ed.)
    In Mekong riparian countries, hydropower development provides energy, but also threatens biodiversity, ecosystems, food security, and an unparalleled freshwater fishery. The Sekong, Sesan, and Srepok Rivers (3S Basin) are major tributaries to the Lower Mekong River (LMB), making up 10% of the Mekong watershed but supporting nearly 40% of the fish species of the LMB. Forty-five dams have been built, are under construction, or are planned in the 3S Basin. We completed a meta-analysis of aquatic and riparian environmental losses from current, planned, and proposed hydropower dams in the 3S and LMB using 46 papers and reports from the past three decades. Proposed mainstem Stung Treng and Sambor dams were not included in our analysis because Cambodia recently announced a moratorium on mainstem Mekong River dams. More than 50% of studies evaluated hydrologic change from dam development, 33% quantified sediment alteration, and 30% estimated fish production changes. Freshwater fish diversity, non-fish species, primary production, trophic ecology, and nutrient loading objectives were less commonly studied. We visualized human and environmental tradeoffs of 3S dams from the reviewed papers. Overall, Lower Sesan 2, the proposed Sekong Dam, and planned Lower Srepok 3A and Lower Sesan 3 have considerable environmental impacts. Tradeoff analyses should include environmental objectives by representing organisms, habitats, and ecosystems to quantify environmental costs of dam development and maintain the biodiversity and extraordinary freshwater fishery of the LMB. 
    more » « less
  3. Datasets for the paper (Climatic and Anthropogenic Controls on Groundwater Dynamics in the Mekong River Basin)- Observed streamflow data from Mekong River Commission (MRC) Groundwater observations from Tiwari et al., (2023; Sci. Data) Groundwater simulation outputs from CLM5 for Mekong River Basin. 
    more » « less
  4. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    The splitting-off operation in undirected graphs is a fundamental reduction operation that detaches all edges incident to a given vertex and adds new edges between the neighbors of that vertex while preserving their degrees. Lovász [Lov{á}sz, 1974; Lov{á}sz, 1993] and Mader [Mader, 1978] showed the existence of this operation while preserving global and local connectivities respectively in graphs under certain conditions. These results have far-reaching applications in graph algorithms literature [Lovász, 1976; Mader, 1978; Frank, 1993; Frank and Király, 2002; Király and Lau, 2008; Frank, 1992; Goemans and Bertsimas, 1993; Frank, 1994; Bang-Jensen et al., 1995; Frank, 2011; Nagamochi and Ibaraki, 2008; Nagamochi et al., 1997; Henzinger and Williamson, 1996; Goemans, 2001; Jordán, 2003; Kriesell, 2003; Jain et al., 2003; Chan et al., 2011; Bhalgat et al., 2008; Lau, 2007; Chekuri and Shepherd, 2008; Nägele and Zenklusen, 2020; Blauth and Nägele, 2023]. In this work, we introduce a splitting-off operation in hypergraphs. We show that there exists a local connectivity preserving complete splitting-off in hypergraphs and give a strongly polynomial-time algorithm to compute it in weighted hypergraphs. We illustrate the usefulness of our splitting-off operation in hypergraphs by showing two applications: (1) we give a constructive characterization of k-hyperedge-connected hypergraphs and (2) we give an alternate proof of an approximate min-max relation for max Steiner rooted-connected orientation of graphs and hypergraphs (due to Király and Lau [Király and Lau, 2008]). Our proof of the approximate min-max relation for graphs circumvents the Nash-Williams' strong orientation theorem and uses tools developed for hypergraphs. 
    more » « less
  5. Abstract The Mekong River Basin (MRB) is undergoing unprecedented changes due to the recent acceleration in large-scale dam construction. While the hydrology of the MRB is well understood and the effects of some of the existing dams have been studied, the potential effects of the planned dams on flood pulse dynamics over the entire Lower Mekong remains unexamined. Here, using hydrodynamic model simulations, we show that the effects of flow regulation on downstream river-floodplain dynamics are relatively predictable along the mainstream Mekong, but flow regulations could potentially disrupt the flood dynamics in the Tonle Sap River (TSR) and small distributaries in the Mekong Delta. Results suggest that TSR flow reversal could cease if the Mekong flood pulse is dampened by 50% and delayed by one-month. While flood occurrence in the vicinity of the Tonle Sap Lake and middle reach of the delta could increase due to enhanced low flow, it could decrease by up to five months in other areas due to dampened high flow, particularly during dry years. Further, areas flooded for less than five months and over six months are likely to be impacted significantly by flow regulations, but those flooded for 5–6 months could be impacted the least. 
    more » « less