skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The compact Hα emitting regions of the Herbig Ae/Be stars HD 179218 and HD 141569 from CHARA spectro-interferometry
Award ID(s):
1636624
PAR ID:
10064497
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
464
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1984 to 1989
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the visual orbits of four spectroscopic binary stars, HD 61859, HD 89822, HD 109510, and HD 191692, using long baseline interferometry with the CHARA Array. We also obtained new radial velocities from echelle spectra using the APO 3.5 m, CTIO 1.5 m, and Fairborn Observatory 2.0 m telescopes. By combining the astrometric and spectroscopic observations, we solve for the full, three-dimensional orbits and determine the stellar masses to 1%–12% uncertainty and distances to 0.4%–6% uncertainty. We then estimate the effective temperature and radius of each component star through Doppler tomography and spectral energy distribution analyses. We found masses of 1.4–3.5 M ⊙ , radii of 1.5–4.7 R ⊙ , and temperatures of 6400–10,300 K. We then compare the observed stellar parameters to the predictions of the stellar evolution models, but found that only one of our systems fits well with the evolutionary models. 
    more » « less
  2. null (Ed.)
  3. Abstract HD 93521 is a massive, rapidly rotating star that is located about 1 kpc above the Galactic disk, and the evolutionary age for its estimated mass is much less than the time of flight if it was ejected from the disk. Here we present a reassessment of both the evolutionary and kinematical timescales for HD 93521. We calculate a time of flight of 39 ± 3 Myr based upon the distance and proper motions from Gaia EDR3 and a summary of radial velocity measurements. We then determine the stellar luminosity using a rotational model combined with the observed spectral energy distribution and distance. A comparison with evolutionary tracks for rotating stars from Brott et al. yields an evolutionary age of about 5 ± 2 Myr. We propose that the solution to the timescale discrepancy is that HD 93521 is a stellar merger product. It was probably ejected from the Galactic disk as a close binary system of lower-mass stars that eventually merged to create the rapidly rotating and single massive star we observe today. 
    more » « less