This paper gives a simple method to construct generator matrices with polynomial entries (and hence offers an alternative encoding method to the one commonly used) for all quasi-cyclic low-density parity-check (QC-LDPC) codes, even for those that are rank deficient. The approach is based on constructing a set of codewords with the desired total rank by using minors of the parity-check matrix. We exemplify the method on several well-known and standard codes. Moreover, we explore the connections between the minors of the parity-check matrix and the known upper bound on minimum distance and provide a method to compute the rank of any parity-check matrix representing a QC-LDPC code, and hence the dimension of the code, by using the minors of the corresponding polynomial parity-check matrix.
more »
« less
Fast and Flexible Probabilistic Model Counting
We present a probabilistic model counter that can trade off running time with approximation accuracy. As in several previous works, the number of models of a formula is estimated by adding random parity constraints (equations). One key difference with prior works is that the systems of parity equations used correspond to the parity check matrices of Low Density Parity Check (LDPC) error-correcting codes. As a result, the equations tend to be much shorter, often containing fewer than 10 variables each, making the search for models that also satisfy the parity constraints far more tractable. The price paid for computational tractability is that the statistical properties of the basic estimator are not as good as when longer constraints are used. We show how one can deal with this issue and derive rigorous approximation guarantees by performing more solver invocations.
more »
« less
- Award ID(s):
- 1733884
- PAR ID:
- 10064719
- Date Published:
- Journal Name:
- Theory and Applications of Satisfiability Testing – SAT 2018
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Linear nested codes, where two or more sub-codes are nested in a global code, have been proposed as candidates for reliable multi-terminal communication. In this paper, we consider nested array-based spatially coupled low-density parity-check (SC-LDPC) codes and propose a line-counting based optimization scheme for minimizing the number of dominant absorbing sets in order to improve its performance in the high signal-to-noise ratio regime. Since the parity-check matrices of different nested sub-codes partially overlap, the optimization of one nested sub-code imposes constraints on the optimization of the other sub-codes. To tackle these constraints, a multi-step optimization process is applied first to one of the nested codes, then sequential optimization of the remaining nested codes is carried out based on the constraints imposed by the previously optimized sub-codes. Results show that the order of optimization has a significant impact on the number of dominant absorbing sets in the Tanner graph of the code, resulting in a trade-off between the performance of a nested code structure and its optimization sequence: the code which is optimized without constraints has fewer harmful structures than the code which is optimized with constraints. We also show that for certain code parameters, dominant absorbing sets in the Tanner graphs of all nested codes are completely removed using our proposed optimization strategy.more » « less
-
In this paper, we present an efficient strategy to enumerate the number of k-cycles, g ≤ k < +2g, in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth g using its polynomial parity-check matrix H. This strategy works for both (n c , n v )-regular and irregular QC-LDPC codes. In this approach, we note that the mth power of the polynomial adjacency matrix can be used to describe walks of length m in the protograph and can therefore be sufficiently described by the matrices Bm(H)≜(HH⊤)⌊m/2⌋H(mmod2), where m ≥ 0. For example, in the case of QC-LDPC codes based on the 3 × n v fully-connected protograph, the complexity of determining the number of k-cycles, Nk, for k = 4, 6 and 8, is O(n2vlog(N)), O(n2vlog(nv)log(N)) and O(n4vlog4(nv)log(N)), respectively. The complexity, depending logarithmically on the lifting factor N, gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes.more » « less
-
In this paper, we present an efficient strategy to enumerate the number of k-cycles, g≤k<2g, in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth g using its polynomial parity-check matrix H. This strategy works for both (dv,dc)-regular and irregular QC-LDPC codes. In this approach, we note that the mth power of the polynomial adjacency matrix can be used to describe walks of length m in the protograph and can therefore be sufficiently described by the matrices Bm(H)(HHT)m/2H(m2), where m≥0. We provide formulas for the number of k-cycles, Nk, by just taking into account repetitions in some multisets constructed from the matrices Bm(H). This approach is shown to have low complexity. For example, in the case of QC-LDPC codes based on the 3×nv fully-connected protograph, the complexity of determining Nk, for k=4,6,8,10 and 12, is O(nv2log(N)), O(nv2log(nv)log(N)), O(nv4log4(nv)log(N)), O(nv4log(nv)log(N)) and O(nv6log6(nv)log(N)), respectively. The complexity, depending logarithmically on the lifting factor N, gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes.more » « less
-
In this paper, we present a linear-time decoding algorithm for expander codes based on irregular graphs of any positive vertex expansion factor [Formula: see text] and inner codes with a minimum distance of at least [Formula: see text], where [Formula: see text] is the maximum right degree. The algorithm corrects a constant fraction of errors. It builds on two thrusts. The first is a series of works starting with that of Sipser and Spielman [Expander codes, IEEE Trans. Inf. Theory 42(6) (1996) 1710–1722] demonstrating that an asymptotically good family of error-correcting codes that can be decoded in linear time even from a constant fraction of errors in a received word provided [Formula: see text] is at least [Formula: see text] and continuing to the results of Gao and Dowling [Fast decoding of expander codes, IEEE Trans. Inf. Theory 64(2) (2018) 972–978], which only require [Formula: see text] provided the inner code minimum distance is sufficiently large. The second is the improved performance of LDPC codes based on irregular graphs demonstrated by Luby et al. [Improved low- density parity-check codes using irregular graphs, IEEE Trans. Inf. Theory 47(2) (2001) 585–598] and Richardson et al. [Design of capacity- approaching irregular low-density parity-check codes, IEEE Trans. Inf. Theory 47(2) (2001) 619–637]. The algorithm presented in this paper allows for irregular or regular graph-based constructions and uses inner codes of appropriate lengths as checks rather than simple parity-checks.more » « less
An official website of the United States government

