skip to main content


Title: Using Social Network Analysis to Study the Social Structures of Inclusion
The purpose of this research paper is to understand how diverse students are incorporated into the social structure of a large enrollment first-year engineering design course. Despite previous work demonstrating the benefits of diverse individuals in engineering, little work has examined how diverse students are incorporated into the social networks that exist within engineering classrooms. Social interactions are one of the most influential sources for integration into communities of practice. Through understanding how students interact and the structure of these interactions, we can elucidate how the engineering community includes members of underrepresented populations. Previous social network analysis (SNA) studies have scrutinized student classroom interactions. These studies typically attempt to link classroom interactions to academic outcomes (i.e., grades). In this study, we start to shift the focus away from connecting student interactions to academic outcomes and examine how the structure of student interactions can encourage an inclusive environment in a formal engineering environment. SNA data was collected via an online survey (n = 502, 74% response rate) one month into the semester at a Western land-grant institution. The survey asked first-year engineering students to indicate with whom they had interacted using a pre-populated list of the class roster and open-ended questions. The number of students that were mentioned by a participant (out-degree) is interpreted as a proxy of their sociableness. Whereas, the number of times a student was mentioned by others (in-degree) is interpreted as popularity. We posit that in an inclusive network structure the social behaviors (i.e., in and out-degree) will be independent of students’ demographic characteristics (e.g., race and gender). Nonparametric hypothesis testing (i.e., Kruskal-Wallis and Dunn’s test) was used to investigate the effects of gender and race on both in and out-degree. Results indicate that the social structure of the first-year engineering community is inclusive of both gender and race. Specifically, results indicated no significant differences for in-degree based on measures of race and gender, for students who provided race and gender information. Out-degree was not significantly different based on race. However, women did demonstrate significantly higher out-degree scores (i.e., greater sociableness) than their peers. Building on previous SNA literature, the increased connections expressed by women may lead to increased learning gains or performance within engineering. Results indicated that the social structure of this first-year engineering course, as indicated by in-degree and out-degree, is not significantly different for underrepresented groups. This result begins to illustrate a more complex story than the existing literature has documented of engineering as an unwelcoming environment for underrepresented students. Future work will explore how these structures do or do not persist over time and how individuals develop attitudes towards diverse individuals as a result of these interactions. We hope that the results of this work will provide practical ways to improve engineering climate for underrepresented students.  more » « less
Award ID(s):
1531586
NSF-PAR ID:
10064802
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASEE annual conference & exposition
ISSN:
2153-5965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Teaming is a core part of engineering education, especially in the first and last years of engineering when project work is a prevalent focus. The literature on the effects of working in diverse teams is mixed. Negative findings include decreased affect, increased frustration, and sustained conflict in teams. Positive findings include increased productivity, production of high quality products, and divergent-thinking and idea generation. Given these mixed findings, it becomes important to not only understand the practical outputs of working in diverse teams, but also how the experience of working in diverse teams influences whether students see themselves as engineers and whether or not they feel they belong in engineering. Our project, Building Supports for Diversity through Engineering Teams, investigates how students’ attitudes towards diversity influence how students experience work in diverse teams through addressing two main research questions: 1) What changes occur in students’ diversity sensitivity, multicultural effectiveness, and engineering practices as a result of working in diverse teams? 2) How do students’ perceptions of diversity, affect, and engineering practices change because of working on diverse teams? Using a multi-method approach, we deployed survey instruments to determine changes in student’s attitudes about teaming, diversity sensitivity, and openness attitudes. We also observed students working in teams and interviewed these students about their perceptions of diversity and experiences in their teams. Preliminary results of the quantitative phase show that variance in students’ attitudes about diversity significantly increase over the semester, further reflecting the mixed results that have been seen previously in the literature. Additionally, Social Network Analysis was used to characterize the social structure practices of a multi-section, large-enrollment first-year engineering course. This reveals the underlying social structure of the environment, its inclusiveness, and how diverse students work with others on engineering. Initial results indicate that students are included in social networks regardless of gender and race. Preliminary results of the qualitative phase, using Interpretive Phenomenological Analysis, have yielded relationships between student’s definitions, valuation, and enactment of diversity in engineering spaces. Individual student’s incoming attitudes of diversity and previous experiences interact with practical needs in first-year engineering classrooms to create different microclimates within each team. These microclimates depict tensions between what instructors emphasize about diversity, stereotypes of engineering as focused on technical instead of social skills, and pragmatic forces of “getting the job done.” This knowledge can help explain some of the complexity behind the conflicting literature on diversity in teams. Ultimately, this research can help us understand how to build inclusive and diverse environments that guide students to learn how to understand their own complex relationship, understanding, and enactment of diversity in engineering. By understanding how students make sense of diversity in engineering spaces, educators and researchers can figure out how to introduce these concepts in relevant ways so that students can inclusively meet the grand challenges in engineering. This curriculum integration, in turn, can improve team interactions and the climate of engineering for underrepresented groups. 
    more » « less
  2. In this full research paper, we bring into focus the interplay of conformity to masculine social norms and demographic characteristics (i.e., gender, race/ethnicity, institutional settings) among undergraduate engineering students in the United States. We approached this study with an exploratory, non-experimental design that involved examining patterns of relationship between the conformity to masculine social norms and demographic characteristics of respondents. Our data were obtained from of survey responses by engineering students (n = 128) in first-year general engineering courses at three universities in the Southeastern United States. We operationalized conformity to masculine social norms using the Conformity to Masculinity Social Norms Inventory (CMNI-22). Our results revealed moderate to low conformity to masculine social norms among engineering students in first-year general engineering courses. Overall, student demographic characteristics appeared to have weak to limited influence on levels of conformity. However, the institutional setting interacted significantly with both gender and race/ethnicity such that male students at the public research university setting and white students in the same setting reported significantly higher levels of conformity to masculine social norms than students in other demographic categories. We discuss these findings as they enrich understanding about how institutional contexts might affect gendered social norms related to engineering professional formation. 
    more » « less
  3. This research paper investigates the relationship between race/ ethnicity, gender, first-generation college student status, and engineering identity using cross-sectional data from early-career engineering majors. Measures of engineering identity are increasingly used in models of engineering education to evaluate how identity contributes to success and persistence of engineering students. Engineering identity is generally assumed to contribute to educational success, with stronger engineering identity leading to persistence. At the same time, data clearly shows that persistence of engineering students varies by race/ethnicity and gender. Given these previous findings, we would expect to find that engineering identity will vary by race/ ethnicity, gender, and first generation status. Yet, relatively little work has quantitatively compared how engineering identity differs across racial/ ethnic groups and gender. While researchers are increasingly trying to gain a better understanding of engineering identity among Latina students, for example, the literature has not yet adequately accounted for how Latina students differ from their non-Hispanic white peers. This works seeks to address that gap in the literature with an exploration of the ways that race/ethnicity, gender, and first generation status work together to impact engineering identity among early-career engineering students at four public Hispanic-Serving Institutions (HSIs) in the Southwestern United States. We conducted surveys as part of a longitudinal study on STEM education. Data discussed here comes from baseline surveys of three cohorts of engineering students (N=475). Approximately two-thirds of the respondents were attending a traditional 4-year university while the remainder (N=159) were attending community college at the time of the survey. Approximately two-thirds of the respondents identified as Latinx, 27% identified as female, and 26.5% reported that they were first-generation college students. While expectations were that engineering identity would vary by race/ethnicity and gender, preliminary analyses of our data unexpectedly reveal no significant differences between Latinx and White students in terms of their engineering identity and no significant differences in engineering identity between male and female students. Interactions between race/ethnicity and gender were also tested and yielded no significant differences between early-career Latinx and White students in terms of their engineering identity. Finally, students who reported that they will be the first in their family to get a college degree had significantly lower engineering identity scores (=-.422; p=.001). These results lead us to conclude that first generation status at HSIs may be more important than gender and race/ ethnicity in the development of engineering identity for early career students. 
    more » « less
  4. This literature review was conducted as a preliminary assessment of the available research literature produced by the engineering education community on climate affecting the retention of engineering doctoral students from diverse backgrounds. We seek to understand this specific student group’s retention in context of organizational science--specifically as an organizational climate issue--- and use an intersectional approach to consider the meaning and relevance of students’ belonging, simultaneously, to multiple social categories such as gender, sexual orientation, socioeconomic background, race/ethnicity, and disability status. We review the literature on engineering doctoral students produced by the engineering education community as a first step to building a climate survey instrument. The objective of this literature review is to explore how the concept of ‘climate’ is being used in context of doctoral engineering student retention to degree completion, and we gather a body of evidence of climate factors. To do this, we conducted a targeted literature review and used organizational climate and intersectionality as our approach to interpreting the literature, as we aim to understand how climate affects the retention of engineering doctoral students from diverse backgrounds. In this paper, we first briefly present our understanding of climate as grounded in organizational science and intersectional theory. We then explain our methodology and finally discuss our analysis of the doctoral engineering student literature in engineering. 
    more » « less
  5. Research shows that the LGBTQ climate in engineering, and other STEM, undergraduate degree programs is rife with heteronormativity and cissexism, leading LGBTQ students to leave STEM majors and careers at higher rates than their heterosexual, cisgender peers. In order to develop a diverse STEM workforce and adequately prepare the next generation of professionals in STEM, higher education, and especially engineering education, must address inequities such as these to ensure broad participation in STEM fields. This NSF CAREER-funded project helps meet this need by examining the participation of LGBTQ students in STEM fields. The project focuses on three primary research aims to address this purpose: test the relationships between the composition of LGBTQ students’ social networks and non-cognitive STEM outcomes, compare STEM degree completion rates between LGBTQ students and their cisgender, heterosexual peers, and explore the intersection of STEM discipline-based identity (e.g., engineering identity, science identity) with sexual and gender identity. This project stands to improve our understanding of how to broaden participation in STEM by pursuing robust research efforts that illuminate the ways sexual and gender identity shape trajectories into, through, and out of STEM. The purpose of this poster is to present preliminary outcomes from the first research aim of the project, which is to test the relationship between composition of students’ social networks and non-cognitive outcomes, and compare these relationships by sexual and gender identities. We hypothesize that homophily within students’ social networks, especially for heterosexual and cisgender students, will predict greater levels of identification with one’s STEM discipline, sense of belonging in STEM, and commitment to a STEM major. LGBTQ students whose LGBTQ connections are primarily outside STEM are hypothesized to feel more of a pull away from STEM. This poster focuses on the social network analysis phase of the project, including instrument development, data collection procedures, and preliminary analysis of the data. Data collection will commence in the spring 2022 semester. Social network analysis (SNA) is a method that measures and represents the patterns and information of contextually bound structural relationships to explain why the relationships occur and the outcomes of their existence, and SNA is only recently gaining ground in educational research. We developed a survey that incorporates generating an ego-centric social network, or the people an individual relies on most for support, with existing measures for sense of belonging, discipline-based identity, and commitment to field of study, adapted for this study’s purpose. The survey validation procedure included cognitive interviews with undergraduate students and expert reviews by engineering education and institutional research experts. Data collection will occur at five colleges and universities nation-wide, representing a range of institutional types, geographical diversity, and student body diversity. The poster will detail the theory and procedures that constitute SNA research, the survey development process for this phase of the project, and preliminary results from analysis of the data. 
    more » « less