skip to main content


Title: A Highly Sensitive UV–vis–NIR All‐Inorganic Perovskite Quantum Dot Phototransistor Based on a Layered Heterojunction
Abstract

All‐inorganic perovskite quantum dots (IPQDs) are a promising material for use in various optoelectronic devices due to their excellent optoelectronic properties and high environmental stability. Here, a high‐performance phototransistor based on a layered heterojunction composed of CsPbI3QDs and a narrow‐bandgap conjugated polymer DPP‐DTT is reported, which shows a high responsivity of 110 A W−1, a specific detectivity of 2.9 × 1013Jones and a light to dark current ratio up to 6 × 103. The heterojunction phototransistor exhibits unipolar p‐type and gate bias modulated behaviors. In addition, the device exhibits a broad spectral detection range from ultraviolet to near infrared. The high sensitivity of the device is attributed to the layered heterojunction and the gate bias modulation property. The work overcomes the existing limitations in sensitivity of IPQD photodetectors due to the poor charge transport between QDs. The convenient solution‐processed fabrication and excellent device performance especially suggest the IPQD/narrow‐bandgap conjugate polymer heterojunction as a promising structure for potential applications of ultrasensitive broadband photodetectors compatible with a wide variety of substrates.

 
more » « less
NSF-PAR ID:
10064871
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
6
Issue:
14
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Novel anti‐ambipolar transistors (AATs) are gate tunable rectifiers with a marked potential for multi‐valued logic circuits. In this work, the optoelectronic applications of AATs in cryogenic conditions are studied, of which the AAT devices consist of vertically stackedp‐SnS andn‐MoSe2nanoflakes to form a type‐II staggered band alignment. An electrostatically tunable p‐SnS/n‐MoSe2cryo‐phototransistor is presented with unique anti‐ambipolar characteristics and cryogenic‐enhanced optoelectronic performance. The cryo‐phototransistor exhibits a sharp and highly symmetric anti‐ambipolar transfer curve at 77 K with the peak‐to‐valley ratio of 103operating under a low bias voltage of 1 V. The high cooling‐enhanced charge mobilities in the cryo‐phototransistor grant this AAT device remarkable photodetection capabilities. At 77 K, thep‐SnS/n‐MoSe2cryo‐phototransistor, holding a broad photoresponse in the spectral range of 250−900 nm, demonstrates its high responsivity of 2 × 104 A W−1and detectivity of 7.5 × 1013 Jones with the excitation at 532 nm. The high‐performancep‐SnS/n‐MoSe2low‐dimensional phototransistor with low operating voltages at 77−150 K is eligible for optoelectronic applications in cryogenic environments. Furthermore, the cryo‐characteristics of this heterostructure can be further extended to design the mul‐tivalued logic circuits operated in cryogenic conditions.

     
    more » « less
  2. Abstract

    Van der Waals (vdW) heterostructures of 2D atomically thin layered materials (2DLMs) provide a unique platform for constructing optoelectronic devices by staking 2D atomic sheets with unprecedented functionality and performance. A particular advantage of these vdW heterostructures is the energy band engineering of 2DLMs to achieve interlayer excitons through type‐II band alignment, enabling spectral range exceeding the cutoff wavelengths of the individual atomic sheets in the 2DLM. Herein, the high performance of GaTe/InSe vdW heterostructures device is reported. Unexpectedly, this GaTe/InSe vdWs p–n junction exhibits extraordinary detectivity in a new shortwave infrared (SWIR) spectrum, which is forbidden by the respective bandgap limits for the constituent GaTe (bandgap of ≈1.70 eV in both the bulk and monolayer) and InSe (bandgap of ≈1.20–1.80 eV depending on thickness reduction from bulk to monolayer). Specifically, the uncooled SWIR detectivity is up to ≈1014Jones at 1064 nm and ≈1012Jones at 1550 nm, respectively. This result indicates that the 2DLM vdW heterostructures with type‐II band alignment produce an interlayer exciton transition, and this advantage can offer a viable strategy for devising high‐performance optoelectronics in SWIR or even longer wavelengths beyond the individual limitations of the bandgaps and heteroepitaxy of the constituent atomic layers.

     
    more » « less
  3. Abstract

    Photodetectors operating across the near‐ to short‐wave infrared (NIR–SWIR,λ= 0.9–1.8 µm) underpin modern science, technology, and society. Organic photodiodes (OPDs) based on bulk‐heterojunction (BHJ) active layers overcome critical manufacturing and operating drawbacks inherent to crystalline inorganic semiconductors, offering the potential for low‐cost, uncooled, mechanically compliant, and ubiquitous infrared technologies. A constraining feature of these narrow bandgap materials systems is the high noise current under an applied bias, resulting in specific detectivities (D*, the figure of merit for detector sensitivity) that are too low for practical utilization. Here, this study demonstrates that incorporating wide‐bandgap insulating polymers within the BHJ suppresses noise by diluting the transport and trapping sites as determined using capacitance‐frequency analysis. The resultingD*of NIR–SWIR OPDs operating from 600–1400 nm under an applied bias of −2 V is improved by two orders of magnitude, from 108to 1010 Jones (cm Hz1/2 W−1), when incorporating polysulfone within the blends. This broadly applicable strategy can reduce noise in IR‐OPDs enabling their practical operation and the realization of emerging technologies.

     
    more » « less
  4. Heterojunction nanohybrids based on low-dimension semiconductors, including colloidal quantum dots (QDs) and 2D atomic materials (graphene, transition metal chalcogenides, etc) provide a fascinating platform to design of new photonic and optoelectronic devices that take advantages of the enhanced light-solid interaction attributed to their strong quantum confinement and superior charge mobility for uncooled photodetectors with a high gain up to 1010. In these heterojunction nanohybrids, the van der Waals (vdW) interface plays a critical role in controlling the optoelectronic process including exciton dissociation by the interface built-in field that drives the follow-up charge injection and transport to graphene. In this paper, we present our recent progress in development of such heterostructures nanohybrids for uncooled infrared detectors including PbS and FeS2 QDs/graphene and 2D vdW heterostructures MoTe2/Graphene/SnS2 and GaTe/InSe. We have found that nonstoichiometric Fe1–xS2 QDs (x = 0.01–0.107) with strong localized surface plasmonic resonance (LSPR) can have much enhanced absorption in broadband from ultraviolet to short-wave infrared (SWIR, 1–3 μm). Consequently, the LSPR Fe1–xS2 QDs/graphene heterostructure photodetectors exhibit extraordinary photoresponsivity in exceeding 4.32 ×106 A/W and figure-of-merit detectivity D* < 7.50 ×1012 Jones in the broadband of UV–Vis–SWIR at room temperature. The 2D vdW heterostructures allows novel designs of interface band alignments with uncooled NIR-SWIR D* up to 1012 Jones. These results illustrate that the heterostructure nanohybrids provide a promising pathway for low-cost, printable and flexible infrared detectors and imaging systems. 
    more » « less
  5. In recent years, oxide electronics has emerged as one of the most promising new technologies for a variety of electrical and optoelectronic applications, including next-generation displays, solar cells, batteries, and photodetectors. Oxide electronics have a lot of potential because of their high carrier mobilities and ability to be manufactured at low temperatures. However, the preponderance of oxide semiconductors is n-type oxides, limiting present applications to unipolar devices and stifling the development of oxide-based bipolar devices like p-n diodes and complementary metal-oxide–semiconductors. We have contributed to oxide electronics, particularly on transition metal oxide semiconductors of which the cations include In, Zn, Sn and Ga. We have integrated these oxide semiconductors into thin film transistors (TFTs) as active channel layer in light of the unique combination of electronic and optical properties such as high carrier mobility (5-10 cm2/Vs), optical transparency in the visible regime (>~90%) and mild thermal budget processing (200-400°C). In this study, we achieved four different results. The first result is that unlike several previous reports on oxide p-n junctions fabricated exploiting a thin film epitaxial growth technique (known as molecular beam epitaxy, MBE) or a high-powered laser beam process (known as pulsed laser deposition, PLD) that requires ultra-high vacuum conditions, a large amount of power, and is limited for large-area processing, we demonstrate oxide-based heterojunction p-n diodes that consist of sputter-synthesized p-SnOx and n-IGZO of which the manufacturing routes are in-line with current manufacturing requirements. The second result is that the synthesized p-SnOx films are devoid of metallic Sn phases (i.e., Sn0 state) with carrier density tuneability and high carrier mobility (> 2 cm2/Vs). The third result is that the charge blocking performance of the metallurgical junction is significantly enhanced by the engineering of trap/defect density of n-IGZO, which is identified using photoelectron microscopy and valence band measurements. The last result is that the resulting oxide-based p-n heterojunction exhibits a high rectification ratio greater than 103 at ±3 V (highest among the sputter-processed oxide junctions), a low saturation current of ~2×10-10 A, and a small turn-on voltage of ~0.5 V. The outcomes of the current study are expected to contribute to the development of p-type oxides and their industrial device applications such as p-n diodes of which the manufacturing routes are in-line with the current processing requirements. 
    more » « less