skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reverse Space‐Time Nonlocal Sine‐Gordon/Sinh‐Gordon Equations with Nonzero Boundary Conditions
Abstract Nonlocal reverse space‐time Sine/Sinh‐Gordon type equations were recently introduced. They arise from a remarkably simple nonlocal reduction of the well‐known AKNS scattering problem, hence, they constitute an integrable evolution equations. Furthermore, the inverse scattering transform (IST) for rapidly decaying data was also constructed. In this paper, the IST for these novel nonlocal equations corresponding to nonzero boundary conditions (NZBCs) at infinity is presented. The NZBC problem is more complex due to the intricate branching structure of the associated linear eigenfunctions. Two cases are analyzed, which correspond to two different values of the phase at infinity. Special soliton solutions are discussed and explicit 1‐soliton and 2‐soliton solutions are found. Both spatially independent and spatially dependent boundary conditions are considered.  more » « less
Award ID(s):
1715991
PAR ID:
10064902
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Studies in Applied Mathematics
Volume:
141
Issue:
3
ISSN:
0022-2526
Page Range / eLocation ID:
p. 267-307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A discussion of three-wave interaction systems with rapidly decaying data is provided. Included are the classical and two nonlocal three-wave interaction systems. These three-wave equations are formulated from underlying compatible linear systems and are connected to a third order linear scattering problem. The inverse scattering transform (IST) is carried out in detail for all these three-wave interaction equations. This entails obtaining and analyzing the direct scattering problem, discrete eigenvalues, symmetries, the inverse scattering problem via Riemann--Hilbert methods, minimal scattering data, and time dependence. In addition, soliton solutions illustrating energy sharing mechanisms are also discussed. A crucial step in the analysis is the use of adjoint eigenfunctions which connects the third order scattering problem to key eigenfunctions that are analytic in the upper/lower half planes. The general compatible nonlinear wave system and its classical and nonlocal three-wave reductions are asymptotic limits of physically significant nonlinear equations, including water/gravity waves with surface tension. 
    more » « less
  2. Abstract Nonlocal integrable partial differential equations possessing a spatial or temporal reflection have constituted an active research area for the past decade. Recently, more general classes of these nonlocal equations have been proposed, wherein the nonlocality appears as a combination of a shift (by a real or a complex parameter) and a reflection. This new shifting parameter manifests itself in the inverse scattering transform (IST) as an additional phase factor in an analogous way to the classical Fourier transform. In this paper, the IST is analyzed in detail for several examples of such systems. Particularly, time, space, and space‐time‐shifted nonlinear Schrödinger (NLS) and space‐time‐shifted modified Korteweg‐de Vries equations are studied. Additionally, the semidiscrete IST is developed for the time, space, and space‐time‐shifted variants of the Ablowitz–Ladik integrable discretization of the NLS. One‐soliton solutions are constructed for all continuous and discrete cases. 
    more » « less
  3. Abstract In this paper, we develop the Riemann–Hilbert approach to the inverse scattering transform (IST) for the complex coupled short‐pulse equation on the line with zero boundary conditions at space infinity, which is a generalization of recent work on the scalar real short‐pulse equation (SPE) and complex short‐pulse equation (cSPE). As a byproduct of the IST, soliton solutions are also obtained. As is often the case, the zoology of soliton solutions for the coupled system is richer than in the scalar case, and it includes both fundamental solitons (the natural, vector generalization of the scalar case), and fundamental breathers (a superposition of orthogonally polarized fundamental solitons, with the same amplitude and velocity but having different carrier frequencies), as well as composite breathers, which still correspond to a minimal set of discrete eigenvalues but cannot be reduced to a simple superposition of fundamental solitons. Moreover, it is found that the same constraint on the discrete eigenvalues which leads to regular, smooth one‐soliton solutions in the complex SPE, also holds in the coupled case, for both a single fundamental soliton and a single fundamental breather, but not, in general, in the case of a composite breather. 
    more » « less
  4. Abstract The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of the associated linear scattering problem. In anomalous diffusion, the mean squared displacement is proportional to t α , α > 0, while in anomalous dispersion, the speed of localized waves is proportional to A α , where A is the amplitude of the wave. Fractional extensions of the modified Korteweg–deVries (mKdV), sine-Gordon (sineG) and sinh-Gordon (sinhG) and associated hierarchies are obtained. Using symmetries present in the linear scattering problem, these equations can be connected with a scalar family of nonlinear evolution equations of which fractional mKdV (fmKdV), fractional sineG (fsineG), and fractional sinhG (fsinhG) are special cases. Completeness of solutions to the scalar problem is obtained and, from this, the nonlinear evolution equation is characterized in terms of a spectral expansion. In particular, fmKdV, fsineG, and fsinhG are explicitly written. One-soliton solutions are derived for fmKdV and fsineG using the inverse scattering transform and these solitons are shown to exhibit anomalous dispersion. 
    more » « less
  5. Generalized matrix exponential solutions to the AKNS equation are obtained by the inverse scattering transformation (IST). The resulting solutions involve six matrices, which satisfy the coupled Sylvester equations. Several kinds of explicit solutions including soliton, complexiton, and Matveev solutions are deduced from the generalized matrix exponential solutions by choosing different kinds of the six involved matrices. Generalized matrix exponential solutions to a general integrable equation of the AKNS hierarchy are also derived. It is shown that the general equation and its matrix exponential solutions share the same linear structure. 
    more » « less