- NSF-PAR ID:
- 10064915
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 123
- Issue:
- 8
- ISSN:
- 2169-897X
- Page Range / eLocation ID:
- p. 4345-4372
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Nitryl chloride (ClNO2) plays an important role in the budget and distribution of tropospheric oxidants, halogens, and reactive nitrogen species. ClNO2is formed from the heterogeneous uptake and reaction of dinitrogen pentoxide (N2O5) on chloride‐containing aerosol, with a production yield,
ϕ (ClNO2), defined as the moles of ClNO2produced relative to N2O5lost. Theϕ (ClNO2) has been increasingly incorporated into 3‐D chemical models where it is parameterized based on laboratory‐derived kinetics and currently accepted aqueous‐phase formation mechanism. This parameterization modelsϕ (ClNO2) as a function of the aerosol chloride to water molar ratio. Box model simulations of night flights during the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) aircraft campaign derived 3,425 individualϕ (ClNO2) values with a median of 0.138 and range of 0.003 to 1. Comparison of the box model median to those predicted by two other field‐basedϕ (ClNO2) derivation methods agreed within a factor of 1.3, within the uncertainties of each method. In contrast, the box model median was 75–84% lower than predictions from the laboratory‐based parameterization (i.e., [parameterization − box model]/parameterization). An evaluation of factors influencing this difference reveals a positive dependence ofϕ (ClNO2) on aerosol water, opposite to the currently parameterized trend. Additional factors may include aqueous‐phase competition reactions for the nitronium ion intermediate and/or direct ClNO2loss mechanisms. Further laboratory studies of ClNO2formation and the impacts of aerosol water, sulfate, organics, and ClNO2aqueous‐phase reactions are required to elucidate and quantify these processes on ambient aerosol, critical for the development of a robustϕ (ClNO2) parameterization.