skip to main content


Title: Investigating Why Students Choose to Become Involved in a University Makerspace through a Mixed-methods Study
Makerspaces have observed and speculated benefits for the students who frequent them. For example, previous studies have found that students who are involved in their campus’s makerspace tend to be more confident and less anxious when conducting engineering design tasks while gaining hands-on experience with machinery not obtained in their coursework. Recognizing the potential benefits of academic makerspaces, we aimed to capture what influences students to become involved in these spaces through a mixed-method study. A quantitative longitudinal study of students in a mechanical engineering program collected data on design self-efficacy, makerspace involvement, and user demographics through surveys conducted on freshmen, sophomores, and seniors. In this paper, the student responses from three semesters of freshmen level design classes are evaluated for involvement and self-efficacy based on whether or not a 3D modeling project requires the use of makerspace equipment. The study finds that students required to use the makerspace for the project were significantly more likely to become involved in the makerspace. These results inspired us to integrate a qualitative approach to examine how student involvement and exposure to the space are related. Using an in-depth phenomenologically based interviewing method, purposive sampling, and snowball sampling, six females, who have all made the conscious decision to engage in a university makerspace(s), participated in a three-series interview process. The interviews were transcribed and analyzed via emerging questions for categorical metrics and infographics of the student exposure and involvement in making and makerspaces. These findings are used to demonstrate 1) how students who do, or do not, seek out making activities may end up in the makerspace and 2) how student narratives resulting in high-makerspace involvement are impacted by prior experiences, classes, and friendships.  more » « less
Award ID(s):
1733708
NSF-PAR ID:
10065026
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract University makerspaces have been touted as a possible avenue for improving student learning, engagement, retention, and creativity. As their popularity has increased worldwide, so has the amount of research investigating their establishment, management, and uses. There have, however, been very few studies that use empirical data to evaluate how these spaces are impacting the people using them. This study of three university makerspaces measures engineering design (ED) self-efficacy and how it is correlated with involvement in the makerspaces, along with student demographics. The three university makerspaces include a relatively new makerspace at a Hispanic-serving university in the southwestern US, makerspaces at an eastern liberal arts university with an engineering program that has been created within the last decade, and a makerspace at a large, research university in the southeast often considered to be one of the top programs in the US. Students at all three universities are surveyed to determine their involvement in their university's makerspace and how they perceive their own abilities in engineering design. The findings presented in this paper show a positive correlation between engineering design self-efficacy (EDSE) and involvement in academic makerspaces. Correlations are also seen between certain demographic factors and the percentage of students who choose to use the academic makerspace available to them. These findings provide crucial empirical evidence to the community on the self-efficacy of students who use makerspaces and provide support for universities to continue making these spaces available to their students. 
    more » « less
  2. There has been dramatic growth in the number of makerspaces at educational institutions. More research is needed to understand student interactions in these spaces and how these spaces should be designed to support student learning. This project uses network analysis techniques to study the network of activities in a makerspace that lead to successful student experiences. The proposed analyses will model a makerspace as a network of interactions between equipment, staff, and students. Results from this study will help educators to 1) identify and remove previously unknown hurdles for students who rarely use the space, 2) design an effective space using limited resources, 3) understand the impact of new equipment or staff, and 4) create learning opportunities such as workshops and curriculum integration that increase student learning. The new knowledge produced by this project may be useful for maximizing equipment and support infrastructure, and for guiding new equipment purchases. Thus, the results will support further development of effective makerspaces. This project hypothesizes that network-level analyses and metrics can provide valuable insights into student learning in makerspaces and will support what-if scenarios for proposed changes in spaces. Systems modeling and analysis have been used successfully to understand complex human and biological networks. In the context of makerspaces, this technique will provide measures of interaction between system components such as students, staff, and equipment. The analyses will identify the system components that are frequently used when students work in the makerspace over multiple visits. The project will allow for the comparison of makerspaces that have different levels of integration with the curriculum and methods of student introduction (pop-up classes, tours, extra-curricular competitions, advertising, and bring a friend). Demonstration of the effectiveness of the analyses in characterizing makerspaces and the ease of data collection will help support the use of this approach in future work that compares makerspaces nationwide. Current results explore the order in which students choose to learn and use the tools in the space, which tools/features are used most frequently and how the data from the daily entry/exit surveys compares to the end-of-semester self-reports. A key question in this research, especially for making it adoptable by other universities, is if end-of-semester, self-reported data is accurate enough to create informative, actionable guidance from the network models without requiring the daily tool usage data. 
    more » « less
  3. Engineering identity development is crucial for engineers’ professional performance, personal fulfillment, and organization’s success. Various factors including recognition by others, interest, and competence can affect the development of engineering identity. Participation in engineering-related activities, such as involvement in makerspaces, can lead to increases in engineering self-efficacy and can provide opportunities for students’ to be recognized as engineers, potentially promoting the development of their engineering identity. However, participation in makerspaces is not necessarily equal across all student groups, with the potential for white, man-dominated cultures of engineering to be replicated in makerspaces, preventing students from marginalized groups from feeling welcome or participating. Earning microcredentials and digital badges in makerspaces has the potential to encourage participation and provide a means for recognition. The goal of this two-year project (funded by NSF’s PFE: Research Initiation in Engineering Formation program) is to study engineering students’ engineering identity development and how makerspaces and digital badges can contribute to this development process. Towards this goal, we interviewed a diverse cohort of eight first-year engineering students at a large, land-grant, Hispanic-Serving Institution in the U.S. during the Fall 2022 semester. Students participated in two one-hour interviews at the start and end of the semester on topics including their making skills, experiences in the makerspace, participation level in groups, perceived recognition as engineers, and feeling of belongingness in the engineering community and makerspaces. This paper presents lessons-learned from the interview implementation process, including dealing with disruptions from the ongoing pandemic and traumatic campus events. We also present emerging themes from qualitative analysis of the interviews. We expect the implications of this work to guide instructors and administrators in developing more motivating and interactive engineering courses and makerspace experiences for diverse students. 
    more » « less
  4. The Engineer of 2020 recognizes creativity, invention, and innovation as indispensable qualities for engineering. It may be argued, however, that traditional engineering programs do not inherently foster these qualities in engineering students, and with limited resources and time, adding innovation-fostering experiences to already over-packed curricula may seem like an insurmountable challenge. Longitudinal studies carried out by the authors have shown that makerspaces can foster improvement in engineering students’ design self-efficacy, and three-part phenomenological interviews have shown that students in makerspaces engage in non-linear, open-ended, student-driven projects that require hands-on designing, prototyping, modeling, and testing. These studies provide initial evidence that makerspaces may have the potential to enhance students’ deep learning of engineering and engineering design. To arrive at the more complex cultural factors related to student involvement and success related to participation in makerspaces, we describe the processes of ethnographic methodologies we are using to study the intersections between the structure of an engineering curriculum and the learning that occurs outside of the classroom in makerspaces. Ethnographic methodologies of participant observation, unstructured and semi-structured interviews enable exploration of how students (1) interact within and construct the culture of makerspaces; (2) talk about maker space culture as important to their commitment to engineering; (3) learn within maker spaces; and (4) choose the type and direction of projects. This paper specifically describes the ethnographic methodologies used to track four different undergraduate student teams participating in a two-year senior capstone project, as well as three different student teams participating in a sophomore design class in which they use makerspaces to build a human powered vehicle for a client with a disability. Initial interpretations are presented that inform our understanding of the complex cultural system in which learning occurs, ultimately helping us to consider ways to improve university makerspaces. 
    more » « less
  5. Recognizing the value of engagement in learning, recent engineering education initiatives have worked to encourage all types of students to pursue engineering while also facilitating the construction of makerspaces on university campuses. Makerspaces have the potential to engage a broader range of students by providing unique and personalized pathways into engineering. While this aims to improve the quality of an engineer’s education, the reality settles in when we begin to question whether these makerspaces are, in fact, encouraging learning in engineering for all types of students. In this work, we focus on investigating how a university makerspace affords learning for female students. We implemented an in-depth phenomenologically based interviewing approach which involved a series of three 90-minute semi-structured interviews with six highly engaged female undergraduate students involved in different makerspaces at a single university. The purpose of these interviews was to engage the students in their experiences with the makerspaces and the projects that they work on in this space, so as to inform how these spaces afford learning, specifically the impact on female student learning. All interviews were conducted by the same female graduate student. This work focuses on the second interviews of two females who had student worker roles in their respective makerspaces on campus. All of the interviews for these two females were transcribed resulting in 180 pages of single-spaced transcriptions, and the second interviews were analyzed through two phases of qualitative data analysis. Types of learning emerged in multiple forms and are presented via case studies of each female participant. For case one, these types of learning include machines learning, social learning, design learning, and self-learning. In the second case, the types of learning are tool learning, resourceful learning, space learning, and management learning. These types of learning are then further discussed according to engineering education pedagogy and implications. Makerspaces are often labeled as “open, learning environments,” and this work demonstrates how these spaces facilitate unique forms of learning that engage these women in the makerspace. 
    more » « less