skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating Why Students Choose to Become Involved in a University Makerspace through a Mixed-methods Study
Makerspaces have observed and speculated benefits for the students who frequent them. For example, previous studies have found that students who are involved in their campus’s makerspace tend to be more confident and less anxious when conducting engineering design tasks while gaining hands-on experience with machinery not obtained in their coursework. Recognizing the potential benefits of academic makerspaces, we aimed to capture what influences students to become involved in these spaces through a mixed-method study. A quantitative longitudinal study of students in a mechanical engineering program collected data on design self-efficacy, makerspace involvement, and user demographics through surveys conducted on freshmen, sophomores, and seniors. In this paper, the student responses from three semesters of freshmen level design classes are evaluated for involvement and self-efficacy based on whether or not a 3D modeling project requires the use of makerspace equipment. The study finds that students required to use the makerspace for the project were significantly more likely to become involved in the makerspace. These results inspired us to integrate a qualitative approach to examine how student involvement and exposure to the space are related. Using an in-depth phenomenologically based interviewing method, purposive sampling, and snowball sampling, six females, who have all made the conscious decision to engage in a university makerspace(s), participated in a three-series interview process. The interviews were transcribed and analyzed via emerging questions for categorical metrics and infographics of the student exposure and involvement in making and makerspaces. These findings are used to demonstrate 1) how students who do, or do not, seek out making activities may end up in the makerspace and 2) how student narratives resulting in high-makerspace involvement are impacted by prior experiences, classes, and friendships.  more » « less
Award ID(s):
1733708
PAR ID:
10065026
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract University makerspaces have been touted as a possible avenue for improving student learning, engagement, retention, and creativity. As their popularity has increased worldwide, so has the amount of research investigating their establishment, management, and uses. There have, however, been very few studies that use empirical data to evaluate how these spaces are impacting the people using them. This study of three university makerspaces measures engineering design (ED) self-efficacy and how it is correlated with involvement in the makerspaces, along with student demographics. The three university makerspaces include a relatively new makerspace at a Hispanic-serving university in the southwestern US, makerspaces at an eastern liberal arts university with an engineering program that has been created within the last decade, and a makerspace at a large, research university in the southeast often considered to be one of the top programs in the US. Students at all three universities are surveyed to determine their involvement in their university's makerspace and how they perceive their own abilities in engineering design. The findings presented in this paper show a positive correlation between engineering design self-efficacy (EDSE) and involvement in academic makerspaces. Correlations are also seen between certain demographic factors and the percentage of students who choose to use the academic makerspace available to them. These findings provide crucial empirical evidence to the community on the self-efficacy of students who use makerspaces and provide support for universities to continue making these spaces available to their students. 
    more » « less
  2. Academic makerspaces represent an ideal opportunity to present engineering students with active, experiential learning opportunities that reinforce theoretical concepts through conceptual design and prototyping. When appropriately supported, experiential learning in makerspaces has the capacity to drive development of technical skills and positive self-efficacy among novice engineers. However, research suggests that students who identify as part of historically underrepresented groups (i.e. those who are not White and male) can experience makerspaces in ways that marginalize their success. Thus, care must be taken in makerspace design and operation to create an environment that has a positive impact on the success of all students. In this study, we consider the perceptions and experiences of women and underrepresented racial/ethnic minorities (URMs) in an academic makerspace at one large, research intensive institution. We surveyed 256 undergraduate mechanical engineering students to compare and contrast their self-efficacy, their perceptions of makerspace support, and their peer-to-peer interactions. We found that student self-efficacy for conceptual design and prototyping did not differ by race or gender. However, females reported they were more likely to have a positive experience in the makerspace when supported by a teaching assistant who was also female. Students who identified as URM were significantly more likely to report discomfort in working with peers in the makerspace. We anticipate the outcomes of this study will provide implications for faculty and staff makerspaces at other postsecondary institutions who aim to build an inclusive and accessible learning environment for all students. 
    more » « less
  3. Engineering identity development is crucial for engineers’ professional performance, personal fulfillment, and organization’s success. Various factors including recognition by others, interest, and competence can affect the development of engineering identity. Participation in engineering-related activities, such as involvement in makerspaces, can lead to increases in engineering self-efficacy and can provide opportunities for students’ to be recognized as engineers, potentially promoting the development of their engineering identity. However, participation in makerspaces is not necessarily equal across all student groups, with the potential for white, man-dominated cultures of engineering to be replicated in makerspaces, preventing students from marginalized groups from feeling welcome or participating. Earning microcredentials and digital badges in makerspaces has the potential to encourage participation and provide a means for recognition. The goal of this two-year project (funded by NSF’s PFE: Research Initiation in Engineering Formation program) is to study engineering students’ engineering identity development and how makerspaces and digital badges can contribute to this development process. Towards this goal, we interviewed a diverse cohort of eight first-year engineering students at a large, land-grant, Hispanic-Serving Institution in the U.S. during the Fall 2022 semester. Students participated in two one-hour interviews at the start and end of the semester on topics including their making skills, experiences in the makerspace, participation level in groups, perceived recognition as engineers, and feeling of belongingness in the engineering community and makerspaces. This paper presents lessons-learned from the interview implementation process, including dealing with disruptions from the ongoing pandemic and traumatic campus events. We also present emerging themes from qualitative analysis of the interviews. We expect the implications of this work to guide instructors and administrators in developing more motivating and interactive engineering courses and makerspace experiences for diverse students. 
    more » « less
  4. Over the past two decades, many studies have analyzed the extensive benefits of makerspaces towards student education, design-self efficacy, and community involvement. However, less work has been dedicated to examining the ways in which students interact within makerspaces. This study seeks to dive deeper into the patterns of tools that students are using and how this knowledge can inform makerspaces and make them more effective. Tool usage data was collected through end of semester surveys administered to students at two large public universities over the course of 5 semesters: Fall 2020, Spring 2021, Spring 2022, Fall 2022, and Spring 2023. The survey asked a variety of questions about prior makerspace experience, general and specific tool usage, and student demographics. The first three semesters of data were used to gain an understanding of how different student groups – defined based on categories such as major, demographic, or class taken – interact with various tools within the space. Combined semester analysis was used to understand how underrepresented minorities were utilizing the space while between semester analysis was used to see trends in makerspace usage over time. The onset of the COVID-19 pandemic at the start of the study provided ample opportunity to examine the effects of unprecedented disruptive events and the resulting restrictions on the health of makerspaces and student interactions. Results showed substantial differences in usage between schools and student groups as well as a decline in usage following the onset of COVID restrictions. In the final two semesters, a pilot study was conducted at both makerspaces to determine how hands-on, and tour-based workshops offered to students can be used to increase tool usage in makerspaces and more successfully welcome new students into the maker world. While there is insufficient data to make any conclusions from these interventions, they showed the potential for promising results if future work is performed. Finally, insights from this study are used to offer suggestions to makerspace administrators on how to address poor makerspace usage. 
    more » « less
  5. There has been dramatic growth in the number of makerspaces at educational institutions. More research is needed to understand student interactions in these spaces and how these spaces should be designed to support student learning. This project uses network analysis techniques to study the network of activities in a makerspace that lead to successful student experiences. The proposed analyses will model a makerspace as a network of interactions between equipment, staff, and students. Results from this study will help educators to 1) identify and remove previously unknown hurdles for students who rarely use the space, 2) design an effective space using limited resources, 3) understand the impact of new equipment or staff, and 4) create learning opportunities such as workshops and curriculum integration that increase student learning. The new knowledge produced by this project may be useful for maximizing equipment and support infrastructure, and for guiding new equipment purchases. Thus, the results will support further development of effective makerspaces. This project hypothesizes that network-level analyses and metrics can provide valuable insights into student learning in makerspaces and will support what-if scenarios for proposed changes in spaces. Systems modeling and analysis have been used successfully to understand complex human and biological networks. In the context of makerspaces, this technique will provide measures of interaction between system components such as students, staff, and equipment. The analyses will identify the system components that are frequently used when students work in the makerspace over multiple visits. The project will allow for the comparison of makerspaces that have different levels of integration with the curriculum and methods of student introduction (pop-up classes, tours, extra-curricular competitions, advertising, and bring a friend). Demonstration of the effectiveness of the analyses in characterizing makerspaces and the ease of data collection will help support the use of this approach in future work that compares makerspaces nationwide. Current results explore the order in which students choose to learn and use the tools in the space, which tools/features are used most frequently and how the data from the daily entry/exit surveys compares to the end-of-semester self-reports. A key question in this research, especially for making it adoptable by other universities, is if end-of-semester, self-reported data is accurate enough to create informative, actionable guidance from the network models without requiring the daily tool usage data. 
    more » « less