skip to main content


Title: Precipitation Origins and Key Drivers of Precipitation Isotope ( 18 O, 2 H, and 17 O) Compositions Over Windhoek
NSF-PAR ID:
10065529
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The isotopic composition of precipitation is used to trace water cycling and climate change, but interpretations of the environmental information recorded in central Andean precipitation isotope ratios are hindered by a lack of multi‐year records, poor spatial distribution of observations, and a predominant focus on Rayleigh distillation. To better understand isotopic variability in central Andean precipitation, we present a three‐year record of semimonthly δ18Opand δ2Hpvalues from 15 stations in southern Peru and triple oxygen isotope data, expressed as ∆′17Op, from 32 precipitation samples. Consistent with previous work, we find that elevation correlates negatively with δ18Opand that seasonal δ18Opvariations are related to upstream rainout and local convection. Spatial δ18Opvariations and atmospheric back trajectories show that both eastern‐ and western‐derived air masses bring precipitation to southern Peru. Seasonal d‐excesspcycles record moisture recycling and relative humidity at remote moisture sources, and both d‐excesspand ∆′17Opclearly differentiate evaporated and non‐evaporated samples. These results begin to establish the natural range of unevaporated ∆′17Opvalues in the central Andes and set the foundation for future paleoclimate and paleoaltimetry studies in the region. This study highlights the hydrologic understanding that comes from a combination of δ18Op, d‐excessp, and ∆′17Opdata and helps identify the evaporation, recycling, and rainout processes that drive water cycling in the central Andes.

     
    more » « less
  2. Abstract

    Measurements of oxygen and hydrogen stable isotopes in precipitation (δ18OPand δ2HP) provide a valuable tool for understanding modern hydrological processes and the empirical foundation for interpreting paleoisotope archives. However, long‐term data sets of modern δ18OPand δ2HPin southern Alaska are entirely absent, thus limiting our insight and application of regionally defined climate‐isotope relationships in this proxy‐rich region. We present and utilize a 13‐year‐long record of event‐based δ18OPand δ2HPdata from Anchorage, Alaska (2005–2018,n = 332), to determine the mechanisms controlling precipitation isotopes. Local surface air temperature explains ~30% of variability in the δ18OPdata with a temperature‐δ18O slope of 0.31 ‰/°C, indicating that δ18OParchives may not be suitable paleo‐thermometers in this region. Instead, back‐trajectory modeling reveals how winter δ18OP2HPreflects synoptic and mesoscale processes in atmospheric circulation that drive changes in the passage of air masses with different moisture sources, transport, and rainout histories. Specifically, meridional systems—with either northerly flow from the Arctic or southerly flow from the Gulf of Alaska—have relatively low δ18OP2HPdue to progressive cooling and removal of precipitation as it condenses with altitude over Alaska's southern mountain ranges. To the contrary, zonally derived moisture from either the North Pacific and/or Bering Sea retains relatively high δ18OP2HPvalues. These new data contribute a better understanding of the modern Alaska water isotope cycle and provide an empirical basis for interpreting paleoisotope archives in context of regional atmospheric circulation.

     
    more » « less
  3. Abstract

    Hydrogen (δD) and oxygen (δ18O) isotopic ratios are strongly correlated in precipitation over time and space, defining the meteoric water line, and the slope of this δD‐δ18O relationship reflects covariations of deuterium excess (d‐excess) with δD or δ18O. This δD‐δ18O line provides a tool for inferring hydrologic processes from the evaporation source to condensation site. Here, we present δD‐δ18O relationships on seasonal and annual timescales for daily precipitation, snow pits, and a 15‐m ice core (Owen) at Summit, Greenland. Seasonally, precipitation δD‐δ18O slopes are less than 8 (summer = 7.70; winter = 7.77), while the annual slope is greater than 8 (8.27). We suggest that intra‐season slopes result primarily from Rayleigh distillation, which, under prevailing conditions, produces slopes less than 8. The summer line has a greater intercept (higher d‐excess) than the winter line. This separation causes annual slopes to be greater than seasonal ones. We attribute high summer d‐excess primarily to contributions of vapor sublimated from the Greenland Ice Sheet and other terrestrial sources. High sublimated moisture proportions result in a large separation between seasonal δD‐δ18O lines, and thus high annual slopes. Inter‐seasonal weighting of precipitation amount also influences annual slopes because slopes are weighed by the number of storms each season. Using snow pit measurements, we demonstrate that precipitation isotopic signals translate to the snowpack. We generate indices to determine Sublimation Proportion Index and Precipitation Weighting Index, and find that annual Owen core δD‐δ18O line slopes are significantly related to these indices, demonstrating that these factors are recorded in ice cores.

     
    more » « less