skip to main content


Title: Landscape genetics identifies streams and drainage infrastructure as dispersal corridors for an endangered wetland bird
Abstract

Anthropogenic alterations to landscape structure and composition can have significant impacts on biodiversity, potentially leading to species extinctions. Population‐level impacts of landscape change are mediated by animal behaviors, in particular dispersal behavior. Little is known about the dispersal habits of rails (Rallidae) due to their cryptic behavior and tendency to occupy densely vegetated habitats. The effects of landscape structure on the movement behavior of waterbirds in general are poorly studied due to their reputation for having high dispersal abilities. We used a landscape genetic approach to test hypotheses of landscape effects on dispersal behavior of the Hawaiian gallinule (Gallinula galeata sandvicensis), an endangered subspecies endemic to the Hawaiian Islands. We created a suite of alternative resistance surfaces representing biologically plausible a priori hypotheses of how gallinules might navigate the landscape matrix and ranked these surfaces by their ability to explain observed patterns in genetic distance among 12 populations on the island of O`ahu. We modeled effective distance among wetland locations on all surfaces using both cumulative least‐cost‐path and resistance‐distance approaches and evaluated relative model performance using Mantel tests, a causal modeling approach, and the mixed‐model maximum‐likelihood population‐effects framework. Across all genetic markers, simulation methods, and model comparison metrics, surfaces that treated linear water features like streams, ditches, and canals as corridors for gallinule movement outperformed all other models. This is the first landscape genetic study on the movement behavior of any waterbird species to our knowledge. Our results indicate that lotic water features, including drainage infrastructure previously thought to be of minimal habitat value, contribute to habitat connectivity in this listed subspecies.

 
more » « less
NSF-PAR ID:
10065563
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
8
Issue:
16
ISSN:
2045-7758
Page Range / eLocation ID:
p. 8328-8343
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Premise

    Seed dispersal allows plants to colonize new sites and contributes to gene flow among populations. Despite its fundamental importance to ecological and evolutionary processes, our understanding of seed dispersal is limited due to the difficulty of directly observing dispersal events. This is particularly true for the majority of plant species that are considered to have gravity as their primary dispersal mechanism. The potential for long‐distance movement of gravity‐dispersed seeds by secondary dispersal vectors is rarely evaluated.

    Methods

    We employ whole‐genome assays of maternally inherited cpDNAinPlagiobothrys nothofulvusto resolve patterns of genetic variation due to effective (realized) seed dispersal within a 16 hectare prairie that is characterized by a mosaic of habitat types. We evaluate the effects of microgeographic landscape features extracted from micro‐UAVaerial surveys on patterns of seed dispersal using landscape genetics methods.

    Results

    We found evidence of high resistance to seed‐mediated gene flow (effective dispersal) within patches ofPlagiobothrys nothofulvus, and strong genetic structure over distances of less than 20 m. Geographic distance was a poor predictor of dispersal distance, while landscape features had stronger influences on patterns of dispersal (distance and direction of seed movement). Patterns of dispersal were best predicted by the combined distribution of flower patches, habitat type, and the network of vole runways, with the latter explaining the largest proportion of variation in the model.

    Conclusions

    Our results suggest that primary dispersal occurs mostly within microhabitats and infrequent secondary dispersal may occur over longer distances due to the activity of small mammals and other vertebrates.

     
    more » « less
  2. Abstract

    Assessing the environmental factors that influence the ability of a threatened species to move through a landscape can be used to identify conservation actions that connect isolated populations. However, direct observations of species' movement are often limited, making the development of alternate approaches necessary. Here we use landscape genetic analyses to assess the impact of landscape features on the movement of individuals between local populations of a threatened snake, the eastern massasauga rattlesnake (Sistrurus catenatus). We linked connectivity data with habitat information from two landscapes of similar size: a large region of unfragmented habitat and a previously studied fragmented landscape consisting of isolated patches of habitat. We used this analysis to identify features of the landscape where modification or acquisition would enhance population connectivity in the fragmented region. We found evidence that current connectivity was impacted by both contemporary land‐cover features, especially roads, and inherent landscape features such as elevation. Next, we derived estimates of expected movement ability using a recently developed pedigree‐based approach and least‐cost paths through the unfragmented landscape. We then used our pedigree and resistance map to estimate resistance polygons of the potential extent forS. catenatusmovement in the fragmented landscape. These polygons identify possible sites for future corridors connecting currently isolated populations in this landscape by linking the impact of future habitat modification or land acquisition to dispersal ability in this species. Overall, our study shows how modeling landscape resistance across differently fragmented landscapes can identify habitat features that affect contemporary movement in threatened species in fragmented landscapes and how this information can be used to guide mitigation actions whose goal is to connect isolated populations.

     
    more » « less
  3. Abstract

    Apex predators are important indicators of intact natural ecosystems. They are also sensitive to urbanization because they require broad home ranges and extensive contiguous habitat to support their prey base. Pumas (Puma concolor) can persist near human developed areas, but urbanization may be detrimental to their movement ecology, population structure, and genetic diversity. To investigate potential effects of urbanization in population connectivity of pumas, we performed a landscape genomics study of 130 pumas on the rural Western Slope and more urbanized Front Range of Colorado, USA. Over 12,000 single nucleotide polymorphisms (SNPs) were genotyped using double‐digest, restriction site‐associated DNA sequencing (ddRADseq). We investigated patterns of gene flow and genetic diversity, and tested for correlations between key landscape variables and genetic distance to assess the effects of urbanization and other landscape factors on gene flow. Levels of genetic diversity were similar for the Western Slope and Front Range, but effective population sizes were smaller, genetic distances were higher, and there was more admixture in the more urbanized Front Range. Forest cover was strongly positively associated with puma gene flow on the Western Slope, while impervious surfaces restricted gene flow and more open, natural habitats enhanced gene flow on the Front Range. Landscape genomic analyses revealed differences in puma movement and gene flow patterns in rural versus urban settings. Our results highlight the utility of dense, genome‐scale markers to document subtle impacts of urbanization on a wide‐ranging carnivore living near a large urban center.

     
    more » « less
  4. Abstract

    Habitat fragmentation impacts ecosystems worldwide through habitat loss, reduced connectivity, and edge effects. Yet, these landscape factors are often confounded, leaving much to be investigated about their relative effects, especially on species interactions. In a landscape experiment, we investigated the consequences of connectivity and edge effects for seed dispersal by ants. We found that ants dispersed seeds farther in habitat patches connected by corridors, but only in patch centers. We did not see an effect on the total number of seeds moved or the rate ants detected seeds. Furthermore, we did not see any differences in ant community composition across patch types, suggesting that shifts in ant behavior or other factors increased ant seed dispersal in patches connected by corridors. Long‐distance seed dispersal by ants that requires an accumulation of short‐distance dispersal events over generations may be an underappreciated mechanism through which corridors increase plant diversity.

     
    more » « less
  5. Abstract

    Habitat loss and fragmentation are leading causes of species declines, driven in part by reduced dispersal. Isolating the effects of fragmentation on dispersal, however, is daunting because the consequences of fragmentation are typically intertwined, such as reduced connectivity and increased prevalence of edge effects. We used a large‐scale landscape experiment to separate consequences of fragmentation on seed dispersal, considering both distance and direction of local dispersal. We evaluated seed dispersal for five wind‐ or gravity‐dispersed, herbaceous plant species that were planted at different distances from habitat edges, within fragments that varied in their connectivity and shape (edge‐to‐area ratio). Dispersal distance was affected by proximity and direction relative to the nearest edge. For four of five species, dispersal distances were greater further from habitat edges and when seeds dispersed in the direction of the nearest edge. Connectivity and patch edge‐to‐area ratio had minimal effects on local dispersal. Our findings illustrate how some, but not all, landscape changes associated with fragmentation can affect the key population process of seed dispersal.

     
    more » « less