skip to main content


Title: High Spatial Order Energy Stable FDTD Methods for Maxwell’s Equations in Nonlinear Optical Media in One Dimension
In this paper, we consider electromagnetic (EM) wave propagation in nonlinear optical media in one spatial dimension. We model the EM wave propagation by the time- dependent Maxwell’s equations coupled with a system of nonlinear ordinary differential equations (ODEs) for the response of the medium to the EM waves. The nonlinearity in the ODEs describes the instantaneous electronic Kerr response and the residual Raman molecular vibrational response. The ODEs also include the single resonance linear Lorentz dispersion. For such model, we will design and analyze fully discrete finite difference time domain (FDTD) methods that have arbitrary (even) order in space and second order in time. It is challenging to achieve provable stability for fully discrete methods, and this depends on the choices of temporal discretizations of the nonlinear terms. In Bokil et al. (J Comput Phys 350:420–452, 2017), we proposed novel modifications of second-order leap-frog and trapezoidal temporal schemes in the context of discontinuous Galerkin methods to discretize the nonlinear terms in this Maxwell model. Here, we continue this work by developing similar time discretizations within the framework of FDTD methods. More specifically, we design fully discrete modified leap-frog FDTD methods which are proved to be stable under appropriate CFL conditions. These method can be viewed as an extension of the Yee-FDTD scheme to this nonlinear Maxwell model. We also design fully discrete trapezoidal FDTD methods which are proved to be unconditionally stable. The performance of the fully discrete FDTD methods are demonstrated through numerical experiments involving kink, antikink waves and third harmonic generation in soliton propagation.  more » « less
Award ID(s):
1720116
NSF-PAR ID:
10065567
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of scientific computing
ISSN:
0885-7474
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we consider Maxwell’s equations in linear dispersive media described by a single-pole Lorentz model for electronic polarization. We study two classes of commonly used spatial discretizations: finite difference methods (FD) with arbitrary even order accuracy in space and high spatial order discontinuous Galerkin (DG) finite element methods. Both types of spatial discretizations are coupled with second order semi-implicit leap-frog and implicit trapezoidal temporal schemes. By performing detailed dispersion analysis for the semi-discrete and fully discrete schemes, we obtain rigorous quantification of the dispersion error for Lorentz dispersive dielectrics. In particular, comparisons of dispersion error can be made taking into account the model parameters, and mesh sizes in the design of the two types of schemes. This work is a continuation of our previous research on energy-stable numerical schemes for nonlinear dispersive optical media [6,7]. The results for the numerical dispersion analysis of the reduced linear model, considered in the present paper, can guide us in the optimal choice of discretization parameters for the more complicated and nonlinear models. The numerical dispersion analysis of the fully discrete FD and DG schemes, for the dispersive Maxwell model considered in this paper, clearly indicate the dependence of the numerical dispersion errors on spatial and temporal discretizations, their order of accuracy, mesh discretization parameters and model parameters. The results obtained here cannot be arrived at by considering discretizations of Maxwell’s equations in free space. In particular, our results contrast the advantages and disadvantages of using high order FD or DG schemes and leap-frog or trapezoidal time integrators over different frequency ranges using a variety of measures 
    more » « less
  2. We provide a short introduction to the devising of a special type of methods for numerically approximating the solution of Hamiltonian partial differential equations. These methods use Galerkin space-discretizations which result in a system of ODEs displaying a discrete version of the Hamiltonian structure of the original system. The resulting system of ODEs is then discretized by a symplectic time-marching method. This combination results in high-order accurate, fully discrete methods which can preserve the invariants of the Hamiltonian defining the ODE system. We restrict our attention to linear Hamiltonian systems, as the main results can be obtained easily and directly, and are applicable to many Hamiltonian systems of practical interest including acoustics, elastodynamics, and electromagnetism. After a brief description of the Hamiltonian systems of our interest, we provide a brief introduction to symplectic time-marching methods for linear systems of ODEs which does not require any background on the subject. We describe then the case in which finite-difference space-discretizations are used and focus on the popular Yee scheme (1966) for electromagnetism. Finally, we consider the case of finite-element space discretizations. The emphasis is placed on the conservation properties of the fully discrete schemes. We end by describing ongoing work. 
    more » « less
  3. Abstract

    This work focuses on modeling the interaction between an incompressible, viscous fluid and a poroviscoelastic material. The fluid flow is described using the time‐dependent Stokes equations, and the poroelastic material using the Biot model. The viscoelasticity is incorporated in the equations using a linear Kelvin–Voigt model. We introduce two novel, noniterative, partitioned numerical schemes for the coupled problem. The first method uses the second‐order backward differentiation formula (BDF2) for implicit integration, while treating the interface terms explicitly using a second‐order extrapolation formula. The second method is the Crank–Nicolson and Leap‐Frog (CNLF) method, where the Crank–Nicolson method is used to implicitly advance the solution in time, while the coupling terms are explicitly approximated by the Leap‐Frog integration. We show that the BDF2 method is unconditionally stable and uniformly stable in time, while the CNLF method is stable under a CFL condition. Both schemes are validated using numerical simulations. Second‐order convergence in time is observed for both methods. Simulations over a longer period of time show that the errors in the solution remain bounded. Cases when the structure is poroviscoelastic and poroelastic are included in numerical examples.

     
    more » « less
  4. Abstract We present a new class of discontinuous Galerkin methods for the space discretization of the time-dependent Maxwell equations whose main feature is the use of time derivatives and/or time integrals in the stabilization part of their numerical traces.These numerical traces are chosen in such a way that the resulting semidiscrete schemes exactly conserve a discrete version of the energy.We introduce four model ways of achieving this and show that, when using the mid-point rule to march in time, the fully discrete schemes also conserve the discrete energy.Moreover, we propose a new three-step technique to devise fully discrete schemes of arbitrary order of accuracy which conserve the energy in time.The first step consists in transforming the semidiscrete scheme into a Hamiltonian dynamical system.The second step consists in applying a symplectic time-marching method to this dynamical system in order to guarantee that the resulting fully discrete method conserves the discrete energy in time.The third and last step consists in reversing the above-mentioned transformation to rewrite the fully discrete scheme in terms of the original variables. 
    more » « less
  5. null (Ed.)
    Abstract We introduce a new class of Runge–Kutta type methods suitable for time stepping to propagate hyperbolic solutions within tent-shaped spacetime regions. Unlike standard Runge–Kutta methods, the new methods yield expected convergence properties when standard high order spatial (discontinuous Galerkin) discretizations are used. After presenting a derivation of nonstandard order conditions for these methods, we show numerical examples of nonlinear hyperbolic systems to demonstrate the optimal convergence rates. We also report on the discrete stability properties of these methods applied to linear hyperbolic equations. 
    more » « less