skip to main content

Title: Providing Opportunities with Technology to Support Traditionally Disadvantaged Students: Examining College Ambition Program
This study examines the impact of the college ambition program (CAP) which is designed to increase postsecondary enrollment particularly for low-income and minority high school students. CAP provides course counseling, financial information, college visits, tutoring, and builds social networks with staff and other students. To measure the impact of the intervention, a quasi-experimental design with panel college enrollment survey data complemented by state administrative data were analyzed. Results indicate that the CAP increased 2-year college attendance for low-income and minority students by 9 %. These results underscore the need to differentiate the features of intervention programs and types of channels in guiding student’s choice of enrolling in a 2-year versus 4-year college.
; ;
Award ID(s):
Publication Date:
Journal Name:
American Education Research Association
Sponsoring Org:
National Science Foundation
More Like this
  1. Results will be presented from a 5-year NSF S-STEM scholarship program for academically talented women in engineering with financial need. Elizabethtown College’s Engineering Practices with Impact Cohort (EPIC) Scholarship program was launched with an NSF S-STEM grant awarded in 2013. The program developed a pathway for academically talented and financially needy women interested in engineering to successfully enter the STEM workforce. The program targeted three critical stages: 1) recruiting talented women into the ABET-accredited engineering program and forming a cohort of scholars,  2) leveraging and expanding existing high impact practices (including an established matriculation program, living-learning community, collaborative learning model, focused mentoring, and undergraduate research) to support women scholars during their college experience, and 3) mentoring scholars asmore »they transitioned to the STEM workforce or graduate programs. The goals of the scholarship program were to increase the number and percent of women entering engineering at our institution and to increase the graduation/employment rate of EPIC scholars beyond that of current engineering students and beyond that of national levels for women engineers.   At the end of this grant, we have roughly doubled the number of women (22.7%) and underrepresented minority students (14%) in the engineering program. This is comparable to the 2016 national average of 20.9% women and 20.6% underrepresented minority bachelor's graduates in engineering. We have also remained at a consistently high level of enrollment and retention of low-income (18.6% Pell-eligible) and first-generation college students (61%). 83% of the scholars have been retained in the engineering program or have graduated with an engineering degree, which is above the institutional and national average. The remaining scholars transferred to another major but have been retained at the institution. All of the scholars participated in a living-learning community, tutoring, focused mentoring, and a women engineers club. Almost all participated in a pre-matriculation program. 17% of the scholars additionally had an undergraduate research experience and 28% studied abroad. 100% of the scholars had engineering workforce jobs or graduate school acceptances at the time of graduation. This program successfully increased the population of underrepresented minority, low-income, and first-generation women entering the engineering workforce. « less
  2. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to thesemore »needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family to attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees.« less
  3. Broad-access institutions play a democratizing role in American society, opening doors to many who might not otherwise pursue college. Yet these institutions struggle with persistence and completion. Do feelings of nonbelonging play a role, particularly for students from groups historically disadvantaged in higher education? Is belonging relevant to students’ persistence—even when they form the numerical majority, as at many broad-access institutions? We evaluated a randomized intervention aimed at bolstering first-year students’ sense of belonging at a broad-access university ( N = 1,063). The intervention increased the likelihood that racial-ethnic minority and first-generation students maintained continuous enrollment over the next twomore »academic years relative to multiple control groups. This two-year gain in persistence was mediated by greater feelings of social and academic fit one-year post-intervention. Results suggest that efforts to address belonging concerns at broad-access, majority-minority institutions can improve core academic outcomes for historically disadvantaged students at institutions designed to increase college accessibility.« less
  4. The overall goal of the NSF Division of Undergraduate Education (DUE) S-STEM funded "Attracting and Cultivating Cybersecurity Experts and Scholars through Scholarships" (ACCESS) program is to increase Cybersecurity-related STEM degree completion of low-income, high-achieving undergraduate students with demonstrated financial need and to generate knowledge about academic success, retention, persistence, graduation, and career pathways of these students to improve the education of future STEM workers. Specifically, ACCESS aims to contribute towards addressing the tremendous governmental and industry need for highly skilled cybersecurity experts. Program objectives include: (1) increasing annual enrollment of students in the B.S. in Computer and Information Sciences programsmore »with specialization in Cybersecurity; (2) enhancing curricular and extra-curricular student support services and activities for students; (3) strengthening the partnerships with computer and information technology employers; and (4) investigating the impact of the curricular and co-curricular activities on student success. While significant research has been done relative to student success, retention, and persistence to graduation in STEM fields, cybersecurity is a new field of study and factors affecting student recruitment, academic success, retention, persistence to graduation within this field are not known. In year 1, students were recruited, applications were evaluated, and scholarships were awarded to nine academically talented students, beginning fall 2020. Of these students, four are female (one is from an underrepresented minority population) and five are male (three are from underrepresented minority populations). The students engage in a set of co-curriculum activities, including participation in: outreach activities; technical and career development seminars; a cybersecurity-focused student organization; and potentially, cybersecurity undergraduate research and summer internship opportunities. The paper and poster describe the background of the ACCESS program, recruitment and selection of ACCESS scholarship recipients, project activities, and challenges presented by the COVID-19 pandemic.« less
  5. With support from NSF Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM), the Culturally Adaptive Pathway to Success (CAPS) program aims to build an inclusive pathway to accelerate the graduation for academically talented, low-income students in Engineering and Computer Science majors at [University Name], which traditionally serves the underrepresented and educationally disadvantaged minority students in the [City Name area]. CAPS focuses on progressively developing social and career competence in our students via three integrated interventions: (1) Mentor+, a relationally informed advising strategy that encourages students to see their academic work in relation to their families and communities; (2) peer cohorts,more »providing social support structure for students and enhancing their sense of belonging in engineering and computer science classrooms and beyond; and (3) professional development from faculty who have been trained in difference-education theory, so that they can support students with varying levels of understanding of the antecedents of college success. To ensure success of these interventions, the CAPS program places great emphasis on developing culturally responsive advisement methods and training faculty mentors to facilitate creating a culture of culturally adaptive advising. This paper presents the CAPS progress in the past two project years. In particular, we will share several changes that we have made after the first project year to improve several key components of the program - recruitment, cohort building, and mentor training. The program strengthened the recruitment by actively involving scholars and faculties in reaching out to students and successfully recruited more scholars for the second cohort (16 scholars) than the first cohort (12 scholars). Also, the program has initiated new activities for peer-mentoring and cohort gathering within each major. As continuous development of the mentor training, the program has added a training session focusing on various aspects of intersectionality as it relates to individual’s social identities, and how mentors can use these knowledge to better interact with mentees. In addition to these changes, we will also report findings on how the program impacted on scholars’ academic growth and mentors’ understanding about the culturally adaptive advisement to answer the CAPS research questions (a) how these interventions affect the development of social belonging and engineering identity of CAPS scholars, and (b) the impact of Mentor+ on academic resilience and progress to degree. The program conducted qualitative data collection and analysis via focus group meetings and interviews as well as quantitative data collection and analysis using academic records and surveys. Our findings will help enhance the CAPS program and establish a sustainable Scholars Support Program at the university, which can be implemented with scholarships funded by other sources, and which can be transferred to similar culturally diverse institutions to increase success for students who have socio-economic challenges.« less