- Award ID(s):
- 1661236
- NSF-PAR ID:
- 10065764
- Date Published:
- Journal Name:
- American Educational Research Association
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Broadening participation in engineering is critical given the gap between the nation’s need for engineering graduates and its production of them. Efforts to spark interest in engineering among PreK-12 students have increased substantially in recent years as a result. However, past research has demonstrated that interest is not always sufficient to help students pursue engineering majors, particularly for rural students. In many rural communities, influential adults (family, friends, teachers) are often the primary influence on career choice, while factors such as community values, lack of social and cultural capital, limited course availability, and inadequate financial resources act as potential barriers. To account for these contextual factors, this project shifts the focus from individual students to the communities to understand how key stakeholders and organizations support engineering as a major choice and addresses the following questions: RQ1. What do current undergraduate engineering students who graduated from rural high schools describe as influences on their choice to attend college and pursue engineering as a post-secondary major? RQ2. How does the college choice process differ for rural students who enrolled in a 4-year university immediately after graduating from high school and those who transferred from a 2-year institution? RQ3. How do community members describe the resources that serve as key supports as well as the barriers that hinder support in their community? RQ4. What strategies do community members perceive their community should implement to enhance their ability to support engineering as a potential career choice? RQ5. How are these supports transferable or adaptable by other schools? What community-level factors support or inhibit transfer and adaptation? To answer the research questions, we employed a three-phase qualitative study. Phase 1 focused on understanding the experiences and perceptions of current [University Name] students from higher-producing rural schools. Analysis of focus group and interview data with 52 students highlighted the importance of interest and support from influential adults in students’ decision to major in engineering. One key finding from this phase was the importance of community college for many of our participants. Transfer students who attended community college before enrolling at [University Name] discussed the financial influences on their decision and the benefits of higher education much more frequently than their peers. In Phase 2, we used the findings from Phase 1 to conduct interviews within the participants’ home communities. This phase helped triangulate students’ perceptions with the perceptions and practices of others, and, equally importantly, allowed us to understand the goals, attitudes, and experiences of school personnel and local community members as they work with students. Participants from the students’ home communities indicated that there were few opportunities for students to learn more about engineering careers and provided suggestions for how colleges and universities could be more involved with students from their community. Phase 3, scheduled for Spring 2020, will bring the findings from Phases 1 and 2 back to rural communities via two participatory design workshops. These workshops, designed to share our findings and foster collaborative dialogue among the participants, will enable us to explore factors that support or hinder transfer of findings and to identify policies and strategies that would enhance each community’s ability to support engineering as a potential career choice.more » « less
-
Abstract Low levels of social interaction across class lines have generated widespread concern 1–4 and are associated with worse outcomes, such as lower rates of upward income mobility 4–7 . Here we analyse the determinants of cross-class interaction using data from Facebook, building on the analysis in our companion paper 7 . We show that about half of the social disconnection across socioeconomic lines—measured as the difference in the share of high-socioeconomic status (SES) friends between people with low and high SES—is explained by differences in exposure to people with high SES in groups such as schools and religious organizations. The other half is explained by friending bias—the tendency for people with low SES to befriend people with high SES at lower rates even conditional on exposure. Friending bias is shaped by the structure of the groups in which people interact. For example, friending bias is higher in larger and more diverse groups and lower in religious organizations than in schools and workplaces. Distinguishing exposure from friending bias is helpful for identifying interventions to increase cross-SES friendships (economic connectedness). Using fluctuations in the share of students with high SES across high school cohorts, we show that increases in high-SES exposure lead low-SES people to form more friendships with high-SES people in schools that exhibit low levels of friending bias. Thus, socioeconomic integration can increase economic connectedness in communities in which friending bias is low. By contrast, when friending bias is high, increasing cross-SES interactions among existing members may be necessary to increase economic connectedness. To support such efforts, we release privacy-protected statistics on economic connectedness, exposure and friending bias for each ZIP (postal) code, high school and college in the United States at https://www.socialcapital.org .more » « less
-
Abstract Parents and friends are important influences on adolescents’ academic outcomes. We examine whether and how adolescents’ social networks compensate for or enhance the effects of their parents’ education on academic outcomes. Among a large ethnoracially diverse sample of high school students in the Southwestern (
N = 2,136) and Midwestern (N = 1,055) United States, results from network autocorrelation models showed that higher levels of mother and father education were related to greater academic self‐efficacy and engagement and higher aspirations, expectations, and grade point averages at both schools. Friends’ parents’ education levels were positively associated with adolescents’ academic aspirations, expectations, and grade point averages across all of the models; higher levels of friends’ parents’ education were related to greater academic self‐efficacy across all models, except for mothers in the Southwest; and friends’ fathers’ education levels were positively related to adolescents’ academic engagement for students in the Midwestern school only. There were no significant interaction effects between parents’ and friends’ parents’ education levels in predicting academic outcomes. Differences in the distribution of parental education across ethnic‐racial groups shaped the implications of the model for adolescents’ academic adjustment. Findings highlight the impact of educational opportunity across generations in shaping academic inequities. -
Research consistently shows that children who have opportunities to actively investigate natural settings and engage in problem-based learning greatly benefit from the experiences. They gain skills, interests, knowledge, aspirations, and motivation to learn more. But how can we provide these rich opportunities in densely populated urban areas where resources and access to natural areas are limited? This project will develop and test a model of curriculum and community enterprise to address that issue within the nation's largest urban school system. Middle school students will study New York harbor and the extensive watershed that empties into it, and they will conduct field research in support of restoring native oyster habitats. The project builds on the existing Billion Oyster Project, and will be implemented by a broad partnership of institutions and community resources, including Pace University, the New York City Department of Education, the Columbia University Lamont-Doherty Earth Observatory, the New York Academy of Sciences, the New York Harbor Foundation, the New York Aquarium, and others. The project focuses on an important concept in the geological, environmental, and biological sciences that typically receives inadequate attention in schools: watersheds. This project builds on and extends the Billion Oyster Project of the New York Harbor School. The project model includes five interrelated components: A teacher education curriculum, a student learning curriculum, a digital platform for project resources, an aquarium exhibit, and an afterschool STEM mentoring program. It targets middle-school students in low-income neighborhoods with high populations of English language learners and students from groups underrepresented in STEM fields and education pathways. The project will directly involve over forty schools, eighty teachers, and 8,640 students over a period of three years. A quasi-experimental, mixed-methods research plan will be used to assess the individual and collective effectiveness of the five project components. Regression analyses will be used to identify effective program aspects and assess the individual effectiveness of participation in various combinations of the five program components. Social network mapping will be used to further asses the overall "curriculum plus community" model.more » « less
-
Context: Within higher education, reports show that approximately 6% of Australian college students and 13% of U.S. college students have identified as having a disability to their institution of higher education. Findings from research in K-12 education report that students with disabilities often leave secondary school with lower college aspirations and are discouraged from taking engineering-related courses. Those who do enrol are often not supported effectively and must navigate physical, cultural, and bureaucratic university systems in order to access resources necessary for success in school and work. This lack of support is problematic as cognitive, developmental, mental health, and physical disabilities can markedly shape the ways in which students perceive and experience school, form professional identities, and move into the engineering workforce. However, little work has explored professional identity development within this population, specifically within a single engineering discipline such as civil engineering. Purpose: To move beyond tolerance and actively embrace students with diverse perspectives in engineering higher education, the purpose of this study is to understand the ways in which undergraduate students who experience disability form professional identities as civil engineers. Approach: Drawing on the sensitizing concepts of identity saliency, intersectionality, and social identity theory, we utilize Constructivist Grounded Theory (GT) to explore the influences of and interactions among students' disability and professional identities within civil engineering. Semi-structured interviews, each lasting approximately 90 minutes, were conducted with undergraduate civil engineering students who identified as having a disability. Here, we present our findings from the initial and focused coding phases of our GT analysis. Results: Our analyses revealed two themes warranting further exploration: 1) varying levels of disability identity saliency in relation to the development of a professional identity; and 2) conflicting colloquial and individual conceptualizations of disability. Overall, it has been observed that students' experiences with and perceptions of these themes tend to vary based on characteristics of an experienced disability. Conclusions: Students with disabilities experience college - and form professional identities - in a variety of ways. While further research is required to delineate how disability shapes college students' professional identities and vice versa, gaining an understanding of student experiences can yield insights to help us create educational spaces that better allow students with disabilities to flourish in engineering and make engineering education more inclusive.more » « less