skip to main content


Title: Layer‐by‐Layer Synthesis of Thick Mesoporous TiO 2 Films with Vertically Oriented Accessible Nanopores and Their Application for Lithium‐Ion Battery Negative Electrodes
Abstract

TiO2films of varying thicknesses (up to ≈1.0 µm) with vertically oriented, accessible 7–9 nm nanopores are synthesized using an evaporation‐induced self‐assembly layer‐by‐layer technique. The hypothesis behind the approach is that epitaxial alignment of hydrophobic blocks of surfactant templates induces a consistent, accessible mesophase orientation across a multilayer film, ultimately leading to continuous, vertically aligned pore channels. Characterization using grazing incidence X‐ray scattering, scanning electron microscopy, and impedance spectroscopy indicates that the pores are oriented vertically even in relatively thick films (up to 1 µm). These films contain a combination of amorphous and nanocrystalline anatase titania of value for electrochemical energy storage. When applied as negative electrodes in lithium‐ion batteries, a capacity of 254 mAh g−1is obtained after 200 cycles for a single‐layer TiO2film prepared on modified substrate, higher than on unmodified substrate or nonporous TiO2film, due to the high accessibility of the vertically oriented channels in the films. Thicker films on modified substrate have increased absolute capacity because of higher mass loading but a reduced specific capacity because of transport limitations. These results suggest that the multilayer epitaxial approach is a viable way to prepare high capacity TiO2films with vertically oriented continuous nanopores.

 
more » « less
NSF-PAR ID:
10065873
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
28
Issue:
37
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The antimony selenide thin film solar cells technology becomes promising due to its excellent anisotropic charge transport and brilliant light absorption capability. Especially, the device performance heavily relies on the vertically oriented Sb2Se3grain to promote photoexcited carrier transport. However, crystalline orientation control has been a major issue in Sb2Se3thin film solar cells. Herein, a new strategy has been developed to tailor the crystal growth of Sb2Se3ribbons perpendicular to the substrate by using the structural heterostructured CdS buffer layer. The heterostructured CdS buffer layer is formed by a dual layer of CdS nanorods and nanoparticles. The hexagonal CdS nanorods passivated by a thin cubic CdS nanoparticle layer can promote [211] and [221] directional growth of Sb2Se3ribbons using a close space sublimation approach. The improved buffer/absorber interface, reduced interface defects, and recombination loss contribute to the improved device efficiency of 7.16%. This new structural heterostructured CdS buffer layer can regulate Sb2Se3nanoribbons crystal growth and pave the way to further improve the low‐dimensional chalcogenide thin film solar cell efficiency.

     
    more » « less
  2. Abstract

    The potential for creating hierarchical domain structures, or mixtures of energetically degenerate phases with distinct patterns that can be modified continually, in ferroelectric thin films offers a pathway to control their mesoscale structure beyond lattice‐mismatch strain with a substrate. Here, it is demonstrated that varying the strontium content provides deterministic strain‐driven control of hierarchical domain structures in Pb1−xSrxTiO3 solid‐solution thin films wherein two types,c/aanda1/a2, of nanodomains can coexist. Combining phase‐field simulations, epitaxial thin‐film growth, detailed structural, domain, and physical‐property characterization, it is observed that the system undergoes a gradual transformation (with increasing strontium content) from droplet‐likea1/a2 domains in ac/adomain matrix, to a connected‐labyrinth geometry ofc/adomains, to a disconnected labyrinth structure of the same, and, finally, to droplet‐likec/adomains in ana1/a2 domain matrix. A relationship between the different mixed‐phase modulation patterns and its topological nature is established. Annealing the connected‐labyrinth structure leads to domain coarsening forming distinctive regions of parallelc/aanda1/a2 domain stripes, offering additional design flexibility. Finally, it is found that the connected‐labyrinth domain patterns exhibit the highest dielectric permittivity.

     
    more » « less
  3. Vertically aligned nanocomposite (VAN) thin films have shown strong potential in oxide nanoionics but are yet to be explored in detail in solid-state battery systems. Their 3D architectures are attractive because they may allow enhancements in capacity, current, and power densities. In addition, owing to their large interfacial surface areas, the VAN could serve as models to study interfaces and solid-electrolyte interphase formation. Here, we have deposited highly crystalline and epitaxial vertically aligned nanocomposite films composed of a Li x La 0.32±0.05 (Nb 0.7±0.1 Ti 0.32±0.05 )O 3±δ -Ti 0.8±0.1 Nb 0.17±0.03 O 2±δ -anatase [herein referred to as LL(Nb, Ti)O-(Ti, Nb)O 2 ] electrolyte/anode system, the first anode VAN battery system reported. This system has an order of magnitude increased Li + ionic conductivity over that in bulk Li 3x La 1/3−x NbO 3 and is comparable with the best available Li 3x La 2/3−x TiO 3 pulsed laser deposition films. Furthermore, the ionic conducting/electrically insulating LL(Nb, Ti)O and electrically conducting (Ti, Nb)O 2 phases are a prerequisite for an interdigitated electrolyte/anode system. This work opens up the possibility of incorporating VAN films into an all solid-state battery, either as electrodes or electrolytes, by the pairing of suitable materials. 
    more » « less
  4.  
    more » « less
  5. Abstract

    Straining the vanadium dimers along the rutilec‐axis can be used to tune the metal‐to‐insulator transition (MIT) of VO2but has thus far been limited to TiO2substrates. In this work VO2/MgF2epitaxial films are grown via molecular beam epitaxy (MBE) to strain engineer the transition temperature (TMIT). First, growth parameters are optimized by varying the synthesis temperature of the MgF2(001) substrate (TS) using a combination of X‐ray diffraction techniques, temperature dependent transport, and soft X‐ray photoelectron spectroscopy. It is determined thatTSvalues greater than 350 °C induce Mg and F interdiffusion and ultimately the relaxation of the VO2layer. Using the optimized growth temperature, VO2/MgF2(101) and (110) films are then synthesized. The three film orientations display MITs with transition temperatures in the range of 15–60 °C through precise strain engineering.

     
    more » « less