skip to main content


Title: Training Deep Networks without Learning Rates Through Coin Betting
Deep learning methods achieve state-of-the-art performance in many application scenarios. Yet, these methods require a significant amount of hyperparameters tuning in order to achieve the best results. In particular, tuning the learning rates in the stochastic optimization process is still one of the main bottlenecks. In this paper, we propose a new stochastic gradient descent procedure for deep networks that does not require any learning rate setting. Contrary to previous methods, we do not adapt the learning rates nor we make use of the assumed curvature of the objective function. Instead, we reduce the optimization process to a game of betting on a coin and propose a learning rate free optimal algorithm for this scenario. Theoretical convergence is proven for convex and quasi-convex functions and empirical evidence shows the advantage of our algorithm over popular stochastic gradient algorithms.  more » « less
Award ID(s):
1740762
PAR ID:
10065929
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems 30
Page Range / eLocation ID:
2160--2170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wallach, H. ; Larochelle, H. ; Beygelzimer, A. ; d'Alché-Buc, F. ; Fox, E. ; Garnett, R. (Ed.)
    Variance reduction has emerged in recent years as a strong competitor to stochastic gradient descent in non-convex problems, providing the first algorithms to improve upon the converge rate of stochastic gradient descent for finding first-order critical points. However, variance reduction techniques typically require carefully tuned learning rates and willingness to use excessively large "mega-batches" in order to achieve their improved results. We present a new algorithm, STORM, that does not require any batches and makes use of adaptive learning rates, enabling simpler implementation and less hyperparameter tuning. Our technique for removing the batches uses a variant of momentum to achieve variance reduction in non-convex optimization. On smooth losses $F$, STORM finds a point $\boldsymbol{x}$ with $E[\|\nabla F(\boldsymbol{x})\|]\le O(1/\sqrt{T}+\sigma^{1/3}/T^{1/3})$ in $T$ iterations with $\sigma^2$ variance in the gradients, matching the optimal rate and without requiring knowledge of $\sigma$. 
    more » « less
  2. null (Ed.)
    We consider the problem of minimizing a convex risk with stochastic subgradients guaranteeing $\epsilon$-locally differentially private ($\epsilon$-LDP). While it has been shown that stochastic optimization is possible with $\epsilon$-LDP via the standard SGD, its convergence rate largely depends on the learning rate, which must be tuned via repeated runs. Further, tuning is detrimental to privacy loss since it significantly increases the number of gradient requests. In this work, we propose BANCO (Betting Algorithm for Noisy COins), the first $\epsilon$-LDP SGD algorithm that essentially matches the convergence rate of the tuned SGD without any learning rate parameter, reducing privacy loss and saving privacy budget. 
    more » « less
  3. We provide new adaptive first-order methods for constrained convex optimization. Our main algorithms AdaACSA and AdaAGD+ are accelerated methods, which are universal in the sense that they achieve nearly-optimal convergence rates for both smooth and non-smooth functions, even when they only have access to stochastic gradients. In addition, they do not require any prior knowledge on how the objective function is parametrized, since they automatically adjust their per-coordinate learning rate. These can be seen as truly accelerated Adagrad methods for constrained optimization. We complement them with a simpler algorithm AdaGrad+ which enjoys the same features, and achieves the standard non-accelerated convergence rate. We also present a set of new results involving adaptive methods for unconstrained optimization and variational inequalities arising from monotone operators. 
    more » « less
  4. null (Ed.)
    We provide new adaptive first-order methods for constrained convex optimization. Our main algorithms AdaACSA and AdaAGD+ are accelerated methods, which are universal in the sense that they achieve nearly-optimal convergence rates for both smooth and non-smooth functions, even when they only have access to stochastic gradients. In addition, they do not require any prior knowledge on how the objective function is parametrized, since they automatically adjust their per-coordinate learning rate. These can be seen as truly accelerated Adagrad methods for constrained optimization. We complement them with a simpler algorithm AdaGrad+ which enjoys the same features, and achieves the standard non-accelerated convergence rate. We also present a set of new results involving adaptive methods for unconstrained optimization and variational inequalities arising from monotone operators. 
    more » « less
  5. OpenReview (Ed.)
    We consider the distributionally robust optimization (DRO) problem with spectral risk-based uncertainty set and f-divergence penalty. This formulation includes common risk-sensitive learning objectives such as regularized condition value-at-risk (CVaR) and average top-k loss. We present Prospect, a stochastic gradient-based algorithm that only requires tuning a single learning rate hyperparameter, and prove that it enjoys linear convergence for smooth regularized losses. This contrasts with previous algorithms that either require tuning multiple hyperparameters or potentially fail to converge due to biased gradient estimates or inadequate regularization. Empirically, we show that Prospect can converge 2-3× faster than baselines such as stochastic gradient and stochastic saddle-point methods on distribution shift and fairness benchmarks spanning tabular, vision, and language domains. 
    more » « less