skip to main content


Title: On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes
Stochastic gradient descent is the method of choice for large scale optimization of machine learning objective functions. Yet, its performance is greatly variable and heavily depends on the choice of the stepsizes. This has motivated a large body of research on adaptive stepsizes. However, there is currently a gap in our theoretical understanding of these methods, especially in the non-convex setting. In this paper, we start closing this gap: we theoretically analyze in the convex and non-convex settings a generalized version of the AdaGrad stepsizes. We show sufficient conditions for these stepsizes to achieve almost sure asymptotic convergence of the gradients to zero, proving the first guarantee for generalized AdaGrad stepsizes in the non-convex setting. Moreover, we show that these stepsizes allow to automatically adapt to the level of noise of the stochastic gradients in both the convex and non-convex settings, interpolating between O(1/T) and O(1/sqrt(T)), up to logarithmic terms.  more » « less
Award ID(s):
1740762 1925930
NSF-PAR ID:
10065931
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
89
ISSN:
2640-3498
Page Range / eLocation ID:
983-992
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we describe a generic approach to show convergence with high probability for both stochastic convex and non-convex optimization with sub-Gaussian noise. In previous works for convex optimization, either the convergence is only in expectation or the bound depends on the diameter of the domain. Instead, we show high probability convergence with bounds depending on the initial distance to the optimal solution. The algorithms use step sizes analogous to the standard settings and are universal to Lipschitz functions, smooth functions, and their linear combinations. The method can be applied to the non-convex case. We demonstrate an $O((1+\sigma^{2}\log(1/\delta))/T+\sigma/\sqrt{T})$ convergence rate when the number of iterations $T$ is known and an $O((1+\sigma^{2}\log(T/\delta))/\sqrt{T})$ convergence rate when $T$ is unknown for SGD, where $1-\delta$ is the desired success probability. These bounds improve over existing bounds in the literature. We also revisit AdaGrad-Norm (Ward et al., 2019) and show a new analysis to obtain a high probability bound that does not require the bounded gradient assumption made in previous works. The full version of our paper contains results for the standard per-coordinate AdaGrad. 
    more » « less
  2. In this work, we describe a generic approach to show convergence with high probability for both stochastic convex and non-convex optimization with sub-Gaussian noise. In previous works for convex optimization, either the convergence is only in expectation or the bound depends on the diameter of the domain. Instead, we show high probability convergence with bounds depending on the initial distance to the optimal solution. The algorithms use step sizes analogous to the standard settings and are universal to Lipschitz functions, smooth functions, and their linear combinations. The method can be applied to the non-convex case. We demonstrate an $O((1+\sigma^{2}\log(1/\delta))/T+\sigma/\sqrt{T})$ convergence rate when the number of iterations $T$ is known and an $O((1+\sigma^{2}\log(T/\delta))/\sqrt{T})$ convergence rate when $T$ is unknown for SGD, where $1-\delta$ is the desired success probability. These bounds improve over existing bounds in the literature. We also revisit AdaGrad-Norm \cite{ward2019adagrad} and show a new analysis to obtain a high probability bound that does not require the bounded gradient assumption made in previous works. The full version of our paper contains results for the standard per-coordinate AdaGrad. 
    more » « less
  3. We study stochastic gradient descent (SGD) in the master-worker architecture under Byzantine attacks. Building upon the recent advances in algorithmic high-dimensional robust statistics, in each SGD iteration, master employs a non-trivial decoding to estimate the true gradient from the unbiased stochastic gradients received from workers, some of which may be corrupt. We provide convergence analyses for both strongly-convex and non-convex smooth objectives under standard SGD assumptions. We can control the approximation error of our solution in both these settings by the mini-batch size of stochastic gradients; and we can make the approximation error as small as we want, provided that workers use a sufficiently large mini-batch size. Our algorithm can tolerate less than 1/3 fraction of Byzantine workers. It can approximately find the optimal parameters in the strongly-convex setting exponentially fast, and reaches to an approximate stationary point in the non-convex setting with linear speed, i.e., with a rate of 1/T, thus, matching the convergence rates of vanilla SGD in the Byzantine-free setting. 
    more » « less
  4. Existing analysis of AdaGrad and other adaptive methods for smooth convex optimization is typically for functions with bounded domain diameter. In unconstrained problems, previous works guarantee an asymptotic convergence rate without an explicit constant factor that holds true for the entire function class. Furthermore, in the stochastic setting, only a modified version of AdaGrad, different from the one commonly used in practice, in which the latest gradient is not used to update the stepsize, has been analyzed. Our paper aims at bridging these gaps and developing a deeper understanding of AdaGrad and its variants in the standard setting of smooth convex functions as well as the more general setting of quasar convex functions. First, we demonstrate new techniques to explicitly bound the convergence rate of the vanilla AdaGrad for unconstrained problems in both deterministic and stochastic settings. Second, we propose a variant of AdaGrad for which we can show the convergence of the last iterate, instead of the average iterate. Finally, we give new accelerated adaptive algorithms and their convergence guarantee in the deterministic setting with explicit dependency on the problem parameters, improving upon the asymptotic rate shown in previous works. 
    more » « less
  5. Existing analysis of AdaGrad and other adaptive methods for smooth convex optimization is typically for functions with bounded domain diameter. In unconstrained problems, previous works guarantee an asymptotic convergence rate without an explicit constant factor that holds true for the entire function class. Furthermore, in the stochastic setting, only a modified version of AdaGrad, different from the one commonly used in practice, in which the latest gradient is not used to update the stepsize, has been analyzed. Our paper aims at bridging these gaps and developing a deeper understanding of AdaGrad and its variants in the standard setting of smooth convex functions as well as the more general setting of quasar convex functions. First, we demonstrate new techniques to explicitly bound the convergence rate of the vanilla AdaGrad for unconstrained problems in both deterministic and stochastic settings. Second, we propose a variant of AdaGrad for which we can show the convergence of the last iterate, instead of the average iterate. Finally, we give new accelerated adaptive algorithms and their convergence guarantee in the deterministic setting with explicit dependency on the problem parameters, improving upon the asymptotic rate shown in previous works. 
    more » « less