skip to main content


Title: A Measure of Affect toward Key Elements of Engineering Professional Practice.
Identity, or how people choose to define themselves, is emerging as an attractive explanation for who persists in engineering. Many studies of engineering identity build off of prior work in math and science identity, emphasizing the academic aspects of engineering. However, affect towards professional practice is also central to engineering identity development. This paper describes the methods used to create a new survey measure of individuals’ affect toward elements of engineering practice. We followed the item generation, refinement, and instrument validation steps required for psychometric validation of a new survey measure. We generated items deductively using the literature on engineering professional skills and practice and inductively based on interviews with practicing engineers, engineering graduate students, and engineering undergraduate students. We blended the inductively and deductively derived item lists to create a list of initial items for the measure. We circulated this list of items to a set of engineering and professional identity experts to establish face validity and made modifications based on their feedback. The final list included 34 items. These 34 items were administered in a questionnaire survey in the fall of 2016 to 1465 engineering undergraduates in three majors at two institutions. We conducted an exploratory factor analysis (EFA) and established internal consistency using Cronbach’s alpha on a subset of the analytical sample data (n=384). The resulting factors fit our a priori assumption of the factors theorized to characterize affect towards engineering professional practice. Using the remaining data (n=904), we conducted a confirmatory factor analysis on the reduced set of items resulting from EFA. The results indicate an emergent factor structure for affect towards elements of engineering practice.  more » « less
Award ID(s):
1636404
NSF-PAR ID:
10066250
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Identity, or how people choose to define themselves, is emerging as an explanation for who pursues and persists in engineering. Recent developments in the study of engineering identity, including studies of math and science identity, tend to emphasize the academic aspects of engineering without considering aspects of professional practice central to the development of an engineering identity. This paper outlines the methods used to create a new survey measure: affect toward elements of engineering practice. We followed the item generation, refinement, and instrument validation steps required for psychometric validation of a new survey measure. Through this process a final list of 34 items was administered in a survey in the fall of 2016 to engineering undergraduates. We conducted an exploratory factor analysis and established internal consistency using Cronbach’s alpha on a subset of the data sample (n=384). The resulting factors reflect key elements of affect towards engineering professional practice. 
    more » « less
  2. This full research paper presents the exploratory factor analysis (EFA) results for the Professional Skill Opportunities survey (PSO) we designed to measure undergraduate engineering students’ opportunities to develop and practice important nontechnical professional skills. We use Dall’alba’s “ways of being” as the theoretical framework for the survey development and generated construct definitions based on past literature, expert review, and cognitive think-aloud interviews. We administered the survey in an engineering class at the beginning of the Spring 2022 semester. After comparing the three EFA models based on goodness-of-fit indices and model interpretability aligned to the theoretical model, the researchers selected a five-factor model. The EFA result and literature on leadership and teamwork showed these two skills are highly interrelated and could be combined into one construct to stress the “sharedness” of leadership responsibilities in teams. The result allowed our team to refine our item pool, revise construct definitions, and generate new items. In future work, we will administer the revised PSO survey to the same population at the end of the same semester as further validation. We also plan to explore the relationship between professional skill development opportunities and students’ social support. We hope the PSO survey can provide educators and institutions a means to offer scaffoldings and more opportunities for professional skill development and better prepare students for the engineering workforce. 
    more » « less
  3. Abstract Background

    Despite well‐documented benefits, instructor adoption of active learning has been limited in engineering education. Studies have identified barriers to instructors’ adoption of active learning, but there is no well‐tested instrument to measure instructors perceptions of these barriers.

    Purpose

    We developed and tested an instrument to measure instructors’ perceptions of barriers to adopting active learning and identify the constructs that coherently categorize those barriers.

    Method

    We used a five‐phase process to develop an instrument to measure instructors’ perceived barriers to adopting active learning. In Phase 1, we built upon the Faculty Instructional Barriers and Identity Survey (FIBIS) to create a draft instrument. In Phases 2 and 3, we conducted exploratory factor analysis (EFA) on an initial 45‐item instrument and a refined 21‐item instrument, respectively. We conducted confirmatory factor analysis (CFA) in Phases 4 and 5 to test the factor structure identified in Phases 2 and 3.

    Results

    Our final instrument consists of 17 items and four factors: (1) student preparation and engagement; (2) instructional support; (3) instructor comfort and confidence; and (4) institutional environment/rewards. Instructor responses indicated that time considerations do not emerge as a standalone factor.

    Conclusions

    Our 17‐item instrument exhibits a sound factor structure and is reliable, enabling the assessment of perceived barriers to adopting active learning in different contexts. The four factors align with an existing model of instructional change in science, technology, engineering, and mathematics (STEM). Although time is a substantial instructor concern that did not comprise a standalone factor, it is closely related to multiple constructs in our final model.

     
    more » « less
  4. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering. 
    more » « less
  5. The purpose of this study is to develop an instrument to measure student perceptions about the learning experiences in their online undergraduate engineering courses. Online education continues to grow broadly in higher education, but the movement toward acceptance and comprehensive utilization of online learning has generally been slower in engineering. Recently, however, there have been indicators that this could be changing. For example, ABET has accredited online undergraduate engineering degrees at Stony Brook University and Arizona State University (ASU), and an increasing number of other undergraduate engineering programs also offer online courses. During this period of transition in engineering education, further investigation about the online modality in the context of engineering education is needed, and survey instrumentation can support such investigations. The instrument presented in this paper is grounded in a Model for Online Course-level Persistence in Engineering (MOCPE), which was developed by our research team by combining two motivational frameworks used to study student persistence: the Expectancy x Value Theory of Achievement Motivation (EVT), and the ARCS model of motivational design. The initial MOCPE instrument contained 79 items related to students’ perceptions about the characteristics of their courses (i.e., the online learning management system, instructor practices, and peer support), expectancies of course success, course task values, perceived course difficulties, and intention to persist in the course. Evidence of validity and reliability was collected using a three-step process. First, we tested face and content validity of the instrument with experts in online engineering education and online undergraduate engineering students. Next, the survey was administered to the online undergraduate engineering student population at a large, Southwestern public university, and an exploratory factor analysis (EFA) was conducted on the responses. Lastly, evidence of reliability was obtained by computing the internal consistency of each resulting scale. The final instrument has seven scales with 67 items across 10 factors. The Cronbach alpha values for these scales range from 0.85 to 0.97. The full paper will provide complete details about the development and psychometric evaluation of the instrument, including evidence of and reliability. The instrument described in this paper will ultimately be used as part of a larger, National Science Foundation-funded project investigating the factors influencing online undergraduate engineering student persistence. It is currently being used in the context of this project to conduct a longitudinal study intended to understand the relationships between the experiences of online undergraduate engineering students in their courses and their intentions to persist in the course. We anticipate that the instrument will be of interest and use to other engineering education researchers who are also interested in studying the population of online students. 
    more » « less