skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thinking in PolAR pictures: Using rotation-friendly mental images to solve Leiter-R Form Completion
The Leiter International Performance Scale-Revised (Leiter-R) is a standardized cognitive test that seeks to "provide a nonverbal measure of general intelligence by sampling a wide variety of functions from memory to nonverbal reasoning." Understanding the computational building blocks of nonverbal cognition, as measured by the Leiter-R, is an important step towards understanding human nonverbal cognition, especially with respect to typical and atypical trajectories of child development. One subtest of the Leiter-R, Form Completion, involves synthesizing and localizing a visual figure from its constituent slices. Form Completion poses an interesting nonverbal problem that seems to combine several aspects of visual memory, mental rotation, and visual search. We describe a new computational cognitive model that addresses Form Completion using a novel, mental-rotation-friendly image representation that we call the Polar Augmented Resolution (PolAR) Picture, which enables high-fidelity mental rotation operations. We present preliminary results using actual Leiter-R test items and discuss directions for future work.  more » « less
Award ID(s):
1730044
PAR ID:
10066318
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the ... AAAI Conference on Artificial Intelligence
ISSN:
2374-3468
Page Range / eLocation ID:
612-619
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Increasing evidence suggests that specific memory systems (e.g., semantic vs. episodic) may support specific creative thought processes. However, there are a number of inconsistencies in the literature regarding the strength, direction, and influence of different memory (semantic, episodic, working, and short-term) and creativity (divergent and convergent thinking) types, as well as the influence of external factors (age, stimuli modality) on this purported relationship. In this meta-analysis, we examined 525 correlations from 79 published studies and unpublished datasets, representing data from 12,846 individual participants. We found a small but significant (r = .19) correlation between memory and creative cognition. Among semantic, episodic, working, and short-term memory, all correlations were significant, but semantic memory – particularly verbal fluency, the ability to strategically retrieve information from long-term memory – was found to drive this relationship. Further, working memory capacity was found to be more strongly related to convergent than divergent creative thinking. We also found that within visual creativity, the relationship with visual memory was greater than that of verbal memory, but within verbal creativity, the relationship with verbal memory was greater than that of visual memory. Finally, the memory-creativity correlation was larger for children compared to young adults despite no impact of age on the overall effect size. These results yield three key conclusions: (1) semantic memory supports both verbal and nonverbal creative thinking, (2) working memory supports convergent creative thinking, and (3) the cognitive control of memory is central to performance on creative thinking tasks. 
    more » « less
  2. Spatial ability is the ability to generate, store, retrieve, and transform visual information to mentally represent a space and make sense of it. This ability is a critical facet of human cognition that affects knowledge acquisition, productivity, and workplace safety. Although having improved spatial ability is essential for safely navigating and perceiving a space on earth, it is more critical in altered environments of other planets and deep space, which may pose extreme and unfamiliar visuospatial conditions. Such conditions may range from microgravity settings with the misalignment of body and visual axes to a lack of landmark objects that offer spatial cues to perceive size, distance, and speed. These altered visuospatial conditions may pose challenges to human spatial cognitive processing, which assists humans in locating objects in space, perceiving them visually, and comprehending spatial relationships between the objects and surroundings. The main goal of this paper is to examine if eye-tracking data of gaze pattern can indicate whether such altered conditions may demand more mental efforts and attention. The key dimensions of spatial ability (i.e., spatial visualization, spatial relations, and spatial orientation) are examined under the three simulated conditions: (1) aligned body and visual axes (control group); (2) statically misaligned body and visual axes (experiment group I); and dynamically misaligned body and visual axes (experiment group II). The three conditions were simulated in Virtual Reality (VR) using Unity 3D game engine. Participants were recruited from Texas A&M University student population who wore HTC VIVE Head-Mounted Displays (HMDs) equipped with eye-tracking technology to work on three spatial tests to measure spatial visualization, orientation, and relations. The Purdue Spatial Visualization Test: Rotations (PSVT: R), the Mental Cutting Test (MCT), and the Perspective Taking Ability (PTA) test were used to evaluate the spatial visualization, spatial relations, and spatial orientation of 78 participants, respectively. For each test, gaze data was collected through Tobii eye-tracker integrated in the HTC Vive HMDs. Quick eye movements, known as saccades, were identified by analyzing raw eye-tracking data using the rate of change of gaze position over time as a measure of mental effort. The results showed that the mean number of saccades in MCT and PSVT: R tests was statistically larger in experiment group II than in the control group or experiment group I. However, PTA test data did not meet the required assumptions to compare the mean number of saccades in the three groups. The results suggest that spatial relations and visualization may require more mental effort under dynamically misaligned idiotropic and visual axes than aligned or statically misaligned idiotropic and visual axes. However, the data could not reveal whether spatial orientation requires more/less mental effort under aligned, statically misaligned, and dynamically misaligned idiotropic and visual axes. The results of this study are important to understand how altered visuospatial conditions impact spatial cognition and how simulation- or game-based training tools can be developed to train people in adapting to extreme or altered work environments and working more productively and safely. 
    more » « less
  3. Abstract Objective: The current cross-sectional study examined cognition and performance-based functional abilities in a continuing care senior housing community (CCSHC) that is comparable to other CCSHCs in the US with respect to residents’ demographic characteristics. Method: Participants were 110 older adult residents of the independent living unit. We assessed sociodemographics, mental health, neurocognitive functioning, and functional capacity. Results: Compared to normative samples, participants performed at or above expectations in terms of premorbid functioning, attention span and working memory, processing speed, timed set-shifting, inhibitory control, and confrontation naming. They performed below expectation in verbal fluency and verbal and visual learning and memory, with impairment rates [31.4% (>1 SD below the mean) and 18.49% (>1.5 SD below the mean)] well above the general population (16% and 7%, respectively). Within the cognitive test battery, two tests of delayed memory were most predictive of a global deficit score. Most cognitive test scores correlated with performance-based functional capacity. Conclusions: Overall, results suggest that a subset of older adults in the independent living sector of CCSHCs are cognitively and functionally impaired and are at risk for future dementia. Results also argue for the inclusion of memory tests in abbreviated screening batteries in this population. We suggest that CCSHCs implement regular cognitive screening procedures to identify and triage those older adults who could benefit from interventions and, potentially, a transition to a higher level of care. 
    more » « less
  4. chmorrow, D.D.; Fidopiastis, C.M. (Ed.)
    This paper presents the results of a study investigating the impact of misaligned idiotropic and visual axes on spatial ability in a simulated microgravity environment in virtual reality. The study involved 99 participants who completed two spatial tests, the Purdue Spatial Visualization Test: Rotations and the Perspective Taking Ability test, in three different scenarios: control (axes aligned), static misalignment, and dynamic misalignment. The results showed that dynamic misalignment significantly impacted mental rotation and spatial visualization performance, but not spatial orientation ability. Additionally, the gaming experience did not moderate mental rotation outcomes but did enhance spatial orientation ability. These findings provide insight into how altered visuospatial conditions may affect human spatial cognition and can inform the development of simulation-based training tools to help people adapt to such environments more effectively. Furthermore, the study highlights the potential of using games as a learning tool to improve productivity and safety in extreme or altered work environments. 
    more » « less
  5. The structure mapping task is a simple method to test people’s mental representations of spatial relationships, and has recently been particularly useful in the study of volumetric spatial cognition such as the spatial memory for locations in multilevel buildings. However, there does not exist a standardised method to analyse such data and structure mapping tasks are typically analysed by human raters, based on criteria defined by the researchers. In this article, we introduce a computational method to assess spatial relationships of objects in the vertical and horizontal domains, which are realized through the structure mapping task. Here, we reanalyse participants’ digitised structure maps from an earlier study (N=41) using the proposed computational methodology. Our results show that the new method successfully distinguishes between different types of structure map representations, and is sensitive to learning order effects. This method can be useful to advance the study of volumetric spatial cognition. 
    more » « less