skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybrid attack monitor design to detect recurrent attacks in a class of cyber-physical systems
In this paper, we study a security problem for attack detection in a class of cyber-physical systems consisting of discrete computerized components interacting with continuous agents. We consider an attacker that may inject recurring signals on both the physical dynamics of the agents and the discrete interactions. We model these attacks as additive unknown inputs with appropriate input signatures and timing characteristics. Using hybrid systems modeling tools, we design a novel hybrid attack monitor and, under reasonable assumptions, show that it is able to detect the considered class of recurrent attacks. Finally, we illustrate the general hybrid attack monitor using a specific finite time convergent observer and show its effectiveness on a simplified model of a cloud-connected network of autonomous vehicles.  more » « less
Award ID(s):
1710621
PAR ID:
10066588
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of 2017 IEEE 56th Annual Conference on Decision and Control (CDC 2017)
Page Range / eLocation ID:
1368 to 1373
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a novel framework for modeling attack scenarios in cyber-physical control systems: we represent a cyber-physical system as a constrained switching system, where a single model embeds the dynamics of the physical process, the attack patterns, and the attack detection schemes. We show that this is compatible with established results in hybrid automata, namely, constrained switching systems. The proposed attack modeling approach admits a large class of non-deterministic attack policies and permits the characterization of system safety as an asymptotic property. By calculating the maximal safe set, the resulting new impact metrics intuitively quantify the degradation of safety and the impact of cyber attacks on the safety properties of the system under attack. We showcase our results via an illustrative example. 
    more » « less
  2. This paper studies a security problem for a class cloud-connected multi-agent systems, where autonomous agents coordinate via a combination of short-range ad-hoc communication links and long-range cloud services. We consider a simplified model for the dynamics of a cloud-connected multi-agent system and attacks, where the states evolve according to linear time-invariant impulsive dynamics, and attacks are modeled as exogenous inputs designed by an omniscent attacker that alters the continuous and impulsive updates. We propose a definition of attack detectability, characterize the existence of stealthy attacks as a function of the system parameters and attack properties, and design a family of undetectable attacks. We illustrate our results on a cloud-based surveillance example. 
    more » « less
  3. null (Ed.)
    Robustness of Deep Reinforcement Learning (DRL) algorithms towards adversarial attacks in real world applications such as those deployed in cyber-physical systems (CPS) are of increasing concern. Numerous studies have investigated the mechanisms of attacks on the RL agent's state space. Nonetheless, attacks on the RL agent's action space (corresponding to actuators in engineering systems) are equally perverse, but such attacks are relatively less studied in the ML literature. In this work, we first frame the problem as an optimization problem of minimizing the cumulative reward of an RL agent with decoupled constraints as the budget of attack. We propose the white-box Myopic Action Space (MAS) attack algorithm that distributes the attacks across the action space dimensions. Next, we reformulate the optimization problem above with the same objective function, but with a temporally coupled constraint on the attack budget to take into account the approximated dynamics of the agent. This leads to the white-box Look-ahead Action Space (LAS) attack algorithm that distributes the attacks across the action and temporal dimensions. Our results showed that using the same amount of resources, the LAS attack deteriorates the agent's performance significantly more than the MAS attack. This reveals the possibility that with limited resource, an adversary can utilize the agent's dynamics to malevolently craft attacks that causes the agent to fail. Additionally, we leverage these attack strategies as a possible tool to gain insights on the potential vulnerabilities of DRL agents. 
    more » « less
  4. Proliferation of distributed Cyber-Physical Systems has raised the need for developing computationally efficient security solutions. Toward this objective, distributed state estimators that can withstand attacks on agents (or nodes) of the system have been developed, but many of these works consider the estimation error to asymptotically converge to zero by restricting the number of agents that can be compromised. We propose Resilient Distributed Kalman Filter (RDKF), a novel distributed algorithm that estimates states within an error bound and does not depend on the number of agents that can be compromised by an attack. Our method is based on convex optimization and performs well in practice, which we demonstrate with the help of a simulation example. We theoretically show that, in a connected network, the estimation error generated by the Distributed Kalman Filter and our RDKF at each agent converges to zero in an attack free and noise free scenario. Furthermore, our resiliency analysis result shows that the RDKF algorithm bounds the disturbance on the state estimate caused by an attack. 
    more » « less
  5. Networked control systems (NCSs) are designed to control and monitor large-scale and complex systems remotely. The communication connectivity in an NCS allows agents to quickly communicate with each other to respond to abrupt changes in the system quickly, thus reducing complexity and increasing efficiency. Despite all these advantages, NCSs are vulnerable to cyberattacks. Injecting cyberattacks, such as a time-delay switch (TDS) attack, into communication channels has the potential to make NCSs inefficient or even unstable. This paper presents a Lyapunov-based approach to detecting and estimating TDS attacks in real time. A secure control strategy is designed to mitigate the effects of TDS attacks in real time. The stability of the secure control system is investigated using the Lyapunov theory. The proposed TDS attack estimator’s performance and secure control strategy are evaluated in simulations and a hardware-in-the-loop environment. 
    more » « less