skip to main content


Title: Tolerance traits related to climate change resilience are independent and polygenic
Abstract

The resilience of organisms to climate change through adaptive evolution is dependent on the extent of genetically based variation in key phenotypic traits and the nature of genetic associations between them. For aquatic animals, upper thermal tolerance and hypoxia tolerance are likely to be a important determinants of sensitivity to climate change. To determine the genetic basis of these traits and to detect associations between them, we compared naturally occurring populations of two subspecies of Atlantic killifish,Fundulus heteroclitus, that differ in both thermal and hypoxia tolerance. Multilocus association mapping demonstrated that 47 and 35 single nucleotide polymorphisms (SNPs) explained 43.4% and 51.9% of variation in thermal and hypoxia tolerance, respectively, suggesting that genetic mechanisms underlie a substantial proportion of variation in each trait. However, no explanatory SNPs were shared between traits, and upper thermal tolerance varied approximately linearly with latitude, whereas hypoxia tolerance exhibited a steep phenotypic break across the contact zone between the subspecies. These results suggest that upper thermal tolerance and hypoxia tolerance are neither phenotypically correlated nor genetically associated, and thus that rates of adaptive change in these traits can be independently fine‐tuned by natural selection. This modularity of important traits can underpin the evolvability of organisms to complex future environmental change.

 
more » « less
NSF-PAR ID:
10066808
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
24
Issue:
11
ISSN:
1354-1013
Page Range / eLocation ID:
p. 5348-5360
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding interactions between environmental stress and genetic variation is crucial to predict the adaptive capacity of species to climate change. Leaf temperature is both a driver and a responsive indicator of plant physiological response to thermal stress, and methods to monitor it are needed. Foliar temperatures vary across leaf to canopy scales and are influenced by genetic factors, challenging efforts to map and model this critical variable. Thermal imagery collected using unoccupied aerial systems (UAS) offers an innovative way to measure thermal variation in plants across landscapes at leaf‐level resolutions. We used a UAS equipped with a thermal camera to assess temperature variation among genetically distinct populations of big sagebrush (Artemisia tridentata), a keystone plant species that is the focus of intensive restoration efforts throughout much of western North America. We completed flights across a growing season in a sagebrush common garden to map leaf temperature relative to subspecies and cytotype, physiological phenotypes of plants, and summer heat stress. Our objectives were to (1) determine whether leaf‐level stomatal conductance corresponds with changes in crown temperature; (2) quantify genetic (i.e., subspecies and cytotype) contributions to variation in leaf and crown temperatures; and (3) identify how crown structure, solar radiation, and subspecies‐cytotype relate to leaf‐level temperature. When considered across the whole season, stomatal conductance was negatively, non‐linearly correlated with crown‐level temperature derived from UAS. Subspecies identity best explained crown‐level temperature with no difference observed between cytotypes. However, structural phenotypes and microclimate best explained leaf‐level temperature. These results show how fine‐scale thermal mapping can decouple the contribution of genetic, phenotypic, and microclimate factors on leaf temperature dynamics. As climate‐change‐induced heat stress becomes prevalent, thermal UAS represents a promising way to track plant phenotypes that emerge from gene‐by‐environment interactions.

     
    more » « less
  2. Abstract

    Phenotypic differentiation plays an important role in the formation and maintenance of reproductive barriers. In some cases, variation in a few key aspects of phenotype can promote and maintain divergence; hence, the identification of these traits and their associations with patterns of genomic divergence is crucial for understanding the patterns and processes of population differentiation. We studied hybridization between thealbaandpersonatasubspecies of the white wagtail (Motacilla alba), and quantified divergence and introgression of multiple morphological traits and 19,437SNPloci on a 3,000 km transect. Our goal was to identify traits that may contribute to reproductive barriers and to assess how variation in these traits corresponds to patterns of genome‐wide divergence. Variation in only one trait—head plumage patterning—was consistent with reproductive isolation. Transitions in head plumage were steep and occurred over otherwise morphologically and genetically homogeneous populations, whereas cline centres for other traits and genomic ancestry were displaced over 100 km from the head cline. Field observational data show that social pairs mated assortatively by head plumage, suggesting that these phenotypes are maintained by divergent mating preferences. In contrast, variation in all other traits and genetic markers could be explained by neutral diffusion, although weak ecological selection cannot be ruled out. Our results emphasize that assortative mating may maintain phenotypic differences independent of other processes shaping genome‐wide variation, consistent with other recent findings that raise questions about the relative importance of mate choice, ecological selection and selectively neutral processes for divergent evolution.

     
    more » « less
  3. Abstract

    Aquatic ectotherms are predicted to harbour genomic signals of local adaptation resulting from selective pressures driven by the strong influence of climate conditions on body temperature. We investigated local adaptation in redband trout (Oncorhynchus mykiss gairdneri) using genome scans for 547 samples from 11 populations across a wide range of habitats and thermal gradients in the interior Columbia River. We estimated allele frequencies for millions of single nucleotide polymorphism loci (SNPs) across populations using low‐coverage whole genome resequencing, and used population structure outlier analyses to identify genomic regions under divergent selection between populations. Twelve genomic regions showed signatures of local adaptation, including two regions associated with genes known to influence migration and developmental timing in salmonids (GREB1L,ROCK1,SIX6). Genotype–environment association analyses indicated that diurnal temperature variation was a strong driver of local adaptation, with signatures of selection driven primarily by divergence of two populations in the northern extreme of the subspecies range. We also found evidence for adaptive differences between high‐elevation desert vs. montane habitats at a smaller geographical scale. Finally, we estimated vulnerability of redband trout to future climate change using ecological niche modelling and genetic offset analyses under two climate change scenarios. These analyses predicted substantial habitat loss and strong genetic shifts necessary for adaptation to future habitats, with the greatest vulnerability predicted for high‐elevation desert populations. Our results provide new insight into the complexity of local adaptation in salmonids, and important predictions regarding future responses of redband trout to climate change.

     
    more » « less
  4. Abstract

    Discovering genetic markers associated with phenotypic or ecological characteristics can improve our understanding of adaptation and guide conservation of key evolutionary traits. The Lahontan cutthroat trout (Oncorhynchus clarkii henshawi) of the northern Great Basin Desert, USA, demonstrated exceptional tolerance to high temperatures in the desert lakes where it resided historically. This trait is central to a conservation hatchery effort to protect the genetic legacy of the nearly extinct lake ecotype. We genotyped full‐sibling families from this conservation broodstock and samples from the only two remaining, thermally distinct, native lake populations at 4,644 new single nucleotide polymorphisms (SNPs). Family‐based genome‐wide association testing of the broodstock identified nine and 26 SNPs associated with thermal tolerance (p < 0.05 andp < 0.1), measured in a previous thermal challenge experiment. Genes near the associated SNPs had complex functions related to immunity, growth, metabolism and ion homeostasis. Principal component analysis using the thermotolerance‐related SNPs showed unexpected divergence between the conservation broodstock and the native lake populations at these loci.FSToutlier tests on the native lake populations identified 18 loci shared between two or more of the tests, with two SNPs identified by all three tests (p < 0.01); none overlapped with loci identified by association testing in the broodstock. A recent history of isolation and the complex genetic and demographic backgrounds of Lahontan cutthroat trout probably limited our ability to find shared thermal tolerance loci. Our study extends the still relatively rare application of genomic tools testing for markers associated with important phenotypic or environmental characteristics in species of conservation concern.

     
    more » « less
  5. Abstract

    Most models exploring the effects of climate change on mosquito‐borne disease ignore thermal adaptation. However, if local adaptation leads to changes in mosquito thermal responses, “one size fits all” models could fail to capture current variation between populations and future adaptive responses to changes in temperature. Here, we assess phenotypic adaptation to temperature inAedes aegypti, the primary vector of dengue, Zika, and chikungunya viruses. First, to explore whether there is any difference in existing thermal response of mosquitoes between populations, we used a thermal knockdown assay to examine five populations ofAe. aegypticollected from climatically diverse locations in Mexico, together with a long‐standing laboratory strain. We identified significant phenotypic variation in thermal tolerance between populations. Next, to explore whether such variation can be generated by differences in temperature, we conducted an experimental passage study by establishing six replicate lines from a single field‐derived population ofAe. aegyptifrom Mexico, maintaining half at 27°C and the other half at 31°C. After 10 generations, we found a significant difference in mosquito performance, with the lines maintained under elevated temperatures showing greater thermal tolerance. Moreover, these differences in thermal tolerance translated to shifts in the thermal performance curves for multiple life‐history traits, leading to differences in overall fitness. Together, these novel findings provide compelling evidence thatAe. aegyptipopulations can and do differ in thermal response, suggesting that simplified thermal performance models might be insufficient for predicting the effects of climate on vector‐borne disease transmission.

     
    more » « less