skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fault-Tolerant Consensus with an Abstract MAC Layer
In this paper, we study fault-tolerant distributed consensus in wireless systems. In more detail, we produce two new randomized algorithms that solve this problem in the abstract MAC layer model, which captures the basic interface and communication guarantees provided by most wireless MAC layers. Our algorithms work for any number of failures, require no advance knowledge of the network participants or network size, and guarantee termination with high probability after a number of broadcasts that are polynomial in the network size. Our first algorithm satisfies the standard agreement property, while our second trades a faster termination guarantee in exchange for a looser agreement property in which most nodes agree on the same value. These are the first known fault-tolerant consensus algorithms for this model. In addition to our main upper bound results, we explore the gap between the abstract MAC layer and the standard asynchronous message passing model by proving fault-tolerant consensus is impossible in the latter in the absence of information regarding the network participants, even if we assume no faults, allow randomized solutions, and provide the algorithm a constant-factor approximation of the network size.  more » « less
Award ID(s):
1733842
PAR ID:
10067143
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the International Symposium on Distributed Computing (DISC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alistarh, Dan (Ed.)
    This paper studies the power of the "abstract MAC layer" model in a single-hop asynchronous network. The model captures primitive properties of modern wireless MAC protocols. In this model, Newport [PODC '14] proves that it is impossible to achieve deterministic consensus when nodes may crash. Subsequently, Newport and Robinson [DISC '18] present randomized consensus algorithms that terminate with O(n³ log n) expected broadcasts in a system of n nodes. We are not aware of any results on other fault-tolerant distributed tasks in this model. We first study the computability aspect of the abstract MAC layer. We present a wait-free algorithm that implements an atomic register. Furthermore, we show that in general, k-set consensus is impossible. Second, we aim to minimize storage complexity. Existing algorithms require Ω(n log n) bits. We propose two wait-free approximate consensus and two wait-free randomized binary consensus algorithms that only need constant storage complexity (except for the phase index). One randomized algorithm terminates with O(n log n) expected broadcasts. All our algorithms are anonymous, meaning that at the algorithm level, nodes do not need to have a unique identifier. 
    more » « less
  2. Bessani, Alysson; Défago, Xavier; Nakamura, Junya; Wada, Koichi; Yamauchi, Yukiko (Ed.)
    This paper studies the design of Byzantine consensus algorithms in an asynchronous single-hop network equipped with the "abstract MAC layer" [DISC09], which captures core properties of modern wireless MAC protocols. Newport [PODC14], Newport and Robinson [DISC18], and Tseng and Zhang [PODC22] study crash-tolerant consensus in the model. In our setting, a Byzantine faulty node may behave arbitrarily, but it cannot break the guarantees provided by the underlying abstract MAC layer. To our knowledge, we are the first to study Byzantine faults in this model. We harness the power of the abstract MAC layer to develop a Byzantine approximate consensus algorithm and a Byzantine randomized binary consensus algorithm. Both of our algorithms require only the knowledge of the upper bound on the number of faulty nodes f, and do not require the knowledge of the number of nodes n. This demonstrates the "power" of the abstract MAC layer, as consensus algorithms in traditional message-passing models require the knowledge of both n and f. Additionally, we show that it is necessary to know f in order to reach consensus. Hence, from this perspective, our algorithms require the minimal knowledge. The lack of knowledge of n brings the challenge of identifying a quorum explicitly, which is a common technique in traditional message-passing algorithms. A key technical novelty of our algorithms is to identify "implicit quorums" which have the necessary information for reaching consensus. The quorums are implicit because nodes do not know the identity of the quorums - such notion is only used in the analysis. 
    more » « less
  3. Nakamoto’s consensus protocol, known for operating in a permissionless model where nodes can join and leave without notice. However, it guarantees agreement only probabilistically. Is this weaker guarantee a necessary concession to the severe demands of supporting a permissionless model? This thesis shows that it is not with the Sandglass and Gorilla Sandglass protocols. Sandglass emerges as the first permissionless consensus algorithm that transcends Nakamoto’s probabilistic limitations by guaranteeing deterministic agreement and termination with probability 1, under general omission failures. It operates under a hybrid synchronous communication model, where, despite the unknown number and dynamic participation of nodes, a majority are consistently correct and synchronously connected. Further building on the framework of Sandglass, Gorilla Sandglass is the first Byzantine fault-tolerant consensus protocol that preserves deterministic agreement and termination with probability 1 within the same synchronous model adopted by Nakamoto. Gorilla addresses the limitations of Sandglass, which only tolerates benign failures, by extending its robustness to include Byzantine failures. We prove the correctness of Gorilla by mapping executions that would violate agreement or termination in Gorilla to executions in Sandglass, where we know such violations are impossible. Establishing termination proves particularly interesting, as the mapping requires reasoning about infinite executions and their probabilities 
    more » « less
  4. Oshman, Rothem (Ed.)
    Nakamoto’s consensus protocol works in a permissionless model and tolerates Byzantine failures, but only offers probabilistic agreement. Recently, the Sandglass protocol has shown such weaker guarantees are not a necessary consequence of a permissionless model; yet, Sandglass only tolerates benign failures, and operates in an unconventional partially synchronous model. We present Gorilla Sandglass, the first Byzantine tolerant consensus protocol to guarantee, in the same synchronous model adopted by Nakamoto, deterministic agreement and termination with probability 1 in a permissionless setting. We prove the correctness of Gorilla by mapping executions that would violate agreement or termination in Gorilla to executions in Sandglass, where we know such violations are impossible. Establishing termination proves particularly interesting, as the mapping requires reasoning about infinite executions and their probabilities. 
    more » « less
  5. Scheideler, Christian (Ed.)
    Nakamoto’s consensus protocol works in a permissionless model, where nodes can join and leave without notice. However, it guarantees agreement only probabilistically. Is this weaker guarantee a necessary concession to the severe demands of supporting a permissionless model? This paper shows that, at least in a benign failure model, it is not. It presents Sandglass, the first permissionless con- sensus algorithm that guarantees deterministic agreement and termination with probability 1 under general omission failures. Like Nakamoto, Sandglass adopts a hybrid synchronous communication model, where, at all times, a majority of nodes (though their number is unknown) are correct and synchronously connected, and allows nodes to join and leave at any time. 
    more » « less