skip to main content


Title: Nutrient uptake in a simplified stream channel: Experimental manipulation of hydraulic residence time and transient storage
Abstract

Stream restoration efforts have aimed at increasing hydraulic residence time (HRT) and transient storage (TS) to enhance nutrient uptake, but there have been few controlled studies quantifying HRT and TS influences on nutrient uptake dynamics. We assessed the effects of HRT and TS on ammonium (NH4+) and phosphate (PO43−) uptake through controlled experiments in an artificial channel draining a pristine tropical stream. We experimentally dammed the channel with artificial weirs, to progressively increase HRT, and performed NH4+and PO43−additions to estimate uptake each time a weir was added. We also ran consecutive additions of NH4+and PO43−with no weirs, to evaluate short‐term changes in uptake metrics. Also, NH4+was injected alone to assess potential nitrification. We observed that NH4+and PO43−uptake rates were much greater in the very first addition, probably due to luxury uptake. The weirs increased mean HRT (from 8.5 to 12 min) and depth (from 6.5 to 8.9 cm) and decreased mean water velocity (0.40–0.28 m s−1). Surprisingly, damming decreased the relative size of transient storage zone (storage zone area/channel area,As/Afrom 0.72 to 0.55), indicating that greater depth increasedA, but notAs. Greater HRT increased uptake rates and velocities of both nutrients (p < 0.05). The NH4+conversion to NO3was estimated at 18% of NH4+consumption, indicating that joint additions to measure NH4+and NO3uptake would not be feasible in this system. Our results suggest that increases in HRT can lead to a greater short‐term retention of nutrients, with implications for stream management and restoration initiatives.

 
more » « less
NSF-PAR ID:
10067342
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecohydrology
Volume:
11
Issue:
7
ISSN:
1936-0584
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Agricultural activities can affect the delivery of nutrients to streams, riparian canopy cover, and the capacity of aquatic systems to process nutrients and sediments. There are few measures of nutrient uptake and metabolism from tropical or subtropical streams in general, and even fewer from tropical regions of South America. We examined ammonium (NH4+) and soluble reactive phosphorus (SRP) retention in streams in Brazil and Argentina. We selected 12 streams with relatively little or extensive agricultural activity and conducted whole‐stream nutrient additions and measurements of gross primary production and ecosystem respiration. We used multiple linear regression to determine potential drivers of nutrient uptake metrics across the streams. Nutrient concentrations and retention differed significantly between land use categories. Both NH4+and SRP concentrations were higher in the agricultural sites (means of 161 and 495 μg l–1, respectively), whereas metabolic rates were slower and transient storage was smaller. Our analysis indicated that agriculture increased ambient uptake lengths and decreased uptake velocities. The regression models revealed that ambient SRP had a positive effect on NH4+uptake and vice versa, suggesting strong stoichiometric controls. Drivers for nutrient uptake in streams with low‐intensity agriculture also included canopy cover, temperature, and ecosystem respiration rates. Nutrient assimilation in agricultural sites was influenced by a higher number of variables (gross primary production for SRP, discharge, and transient storage for both nutrients). Our results indicate agricultural activity changes both the magnitude of in‐stream nutrient uptake and the mechanisms that control its variation, with important implications for South American streams under agricultural intensification.

     
    more » « less
  2. Abstract

    Over the past 30 plus years, the Arctic has warmed at a rate of 0.6°C per decade. This has resulted in considerable permafrost thaw and alterations of hydrological and biogeochemical processes. Coincident with these changes, recent studies document increases in annual fluxes of inorganic nutrients in larger Arctic rivers. Changing nutrient fluxes in Arctic rivers have been largely attributed to warming‐induced active layer expansion and newly exposed subsurface source areas. However, the ability of Arctic headwater streams to modulate inorganic nutrient patterns manifested in larger rivers remains unresolved. We evaluated environmental conditions, stream ecosystem metabolism, and nutrient uptake in three headwater streams of the Alaskan Arctic to quantify patterns of retention of inorganic nitrogen (N) and phosphorous (P). We observed elevated ambient nitrate‐N (NO3‐N) concentrations in late summer/early fall in two of three experimental stream reaches. We observed detectable increases in uptake as a result of nutrient addition in 88% of PO4‐P additions (n = 25), 38% of NH4‐N additions (n = 24), and 24% of NO3‐N additions (n = 25). We observed statistically significant relationships between NH4‐N uptake and ecosystem respiration, and PO4‐P uptake and gross primary productivity. Although these headwater streams demonstrate ability to control downstream transport of PO4‐P, we observed little evidence the same holds for dissolved inorganic N. Consequently, our results suggest that continued increases in terrestrial to aquatic N transfer in Arctic headwater landscapes are likely to be evident in larger Arctic rivers, in‐network lakes, and coastal environments.

     
    more » « less
  3. Abstract

    Soil nutrient distribution is heterogeneous in space and time, potentially altering nutrient acquisition by trees and microorganisms. Ecologists have distinguished “hot spots” (HSs) as areas with enhanced and sustained rates of nutrient fluxes relative to the surrounding soil matrix. We evaluated the spatial and temporal patterns in nutrient flux HSs in two mixed-conifer forest soils by repeatedly sampling the soil solution at the same spatial locations (horizontally and vertically) over multiple seasons and years using ion exchange resins incubated in situ. The climate of these forests is Mediterranean, with intense fall rains occurring following summers with little precipitation, and highly variable winter snowfall. Hot spots formed most often for NO3and Na+. Although nutrient HSs often occurred in the same spatial location multiple times, HSs persisted more often for PO43−NH4+, and NO3, and were more transient for Ca2+, Mg2+, and Na+. Sampling year (annual precipitation ranged from 558 to 1223 mm) impacted the occurrence of HSs for most nutrients, but season was only significant for PO43−, NH4+, NO3, and Na+, with HSs forming more often after fall rains than after spring snowmelt. The frequency of HSs significantly decreased with soil depth for all nutrients, forming most commonly immediately below the surficial organic horizon. Although HSs accounted for less than 17% of the sampling volume, they were responsible for 56–88% of PO43−, NH4+, and NO3resin fluxes. Our results suggest that macronutrient HSs have a disproportional contribution to soil biogeochemical structure, with implications for vegetation nutrient acquisition strategies and biogeochemical models.

    Graphical abstract

     
    more » « less
  4. Abstract

    Picoplankton populations dominate the planktonic community in the surface oligotrophic ocean. Yet, their strategies in the acquisition and the partitioning of organic and inorganic sources of nitrogen (N) and carbon (C) are poorly described. Here, we measured at the single‐cell level the uptake of dissolved inorganic C (C‐fixation), C‐leucine, N‐leucine, nitrate (NO3), ammonium (NH4+), and N‐urea in pigmented and nonpigmented picoplankton groups at six low‐N stations in the northwestern Atlantic Ocean. Our study highlights important differences in trophic strategies betweenProchlorococcus,Synechococcus, photosynthetic pico‐eukaryotes, and nonpigmented prokaryotes. Nonpigmented prokaryotes were characterized by high leucine uptake rates, nonsignificant C‐fixation and relatively low NH4+, N‐urea, and NO3uptake rates. Nonpigmented prokaryotes contributed to 7% ± 3%, 2% ± 2%, and 9% ± 5% of the NH4+, NO3, and N‐urea community uptake, respectively. In contrast, pigmented groups displayed relatively high C‐fixation rates, NH4+and N‐urea uptake rates, but lower leucine uptake rates than nonpigmented prokaryotes.Synechococcusand photosynthetic pico‐eukaryotes NO3uptake rates were higher thanProchlorococcusones. Pico‐sized pigmented groups accounted for a significant fraction of the community C‐fixation (63% ± 27%), NH4+uptake (47% ± 27%), NO3uptake (62% ± 49%), and N‐urea uptake (81% ± 35%). Interestingly,Prochlorococcusand photosynthetic pico‐eukaryotes showed a greater reliance on C‐ and N‐leucine thanSynechococcuson average, suggesting a greater reliance on organic C and N sources. Taken together, our single‐cell results decipher the wide diversity of C and N trophic strategies between and within marine picoplankton groups, but a clear partitioning between pigmented and nonpigmented groups still remains.

     
    more » « less
  5. Abstract

    Current understanding of the relationship between nitrate (NO3) uptake and energy cycling in lotic environments comes from studies conducted in low‐nutrient (NO3 < 1 mg‐N L−1), small (discharge <1 m3s−1) systems. Recent advances in sensor technology have allowed for continuous estimates of whole‐river NO3uptake, allowing us to address how the relationship between nutrient uptake and metabolism changes over time and space in larger rivers. We used a six‐month, controlled nitrogen (N) waste release into the eighth order Kansas River (USA) as an ecosystem level nutrient addition experiment. We deployed four NO3and dissolved oxygen sensors along a 33 km study reach, from February to May 2018, to assess the spatiotemporal relationship between nutrient uptake and stream metabolism during the waste addition. Contrary to our prediction, we did not find evidence of uptake saturation despite an extreme increase in nutrient supply during winter, a period of generally lower biological activity. Although high uptake rates were observed across the study reach, they were uncorrelated to gross primary production. Overall, despite winter temperatures, NO3uptake rates were high compared to small streams and rivers. We provide evidence that large rivers can be effective ecosystems for retaining and transforming nutrients, while showing that the fine‐scale mechanisms that regulate nutrient retention in large rivers are still largely unknown.

     
    more » « less