skip to main content

Title: Controlled self-sorting in self-assembled cage complexes
In this frontier article we highlight recent advances in subcomponent self-sorting in self-assembled metal–ligand cage complexes, with a focus on selective discrimination between ligands that contain highly similar metal-coordinating groups. Effects such as varying ligand length, coordination angle and backbone flexibility, as well as the introduction of secondary weak forces such as hydrogen bonds can be exploited to favor either narcissistic or social self-sorting. We highlight these creative solutions, and emphasize the challenges that remain in the development of functional self-assembled heterocomplexes.
; ;
Award ID(s):
Publication Date:
Journal Name:
Dalton Transactions
Page Range or eLocation-ID:
14719 to 14723
Sponsoring Org:
National Science Foundation
More Like this
  1. This Account describes our efforts over the last decade to synthesize self-assembled metal–ligand cage complexes that display reactive functional groups on their interiors. This journey has taken us down a variety of research avenues, including studying the mechanism of reversible self-assembly, analyzing ligand self-sorting properties, post-assembly reactivity, molecular recognition, and binding studies, and finally reactivity and catalysis. Each of these individual topics are discussed here, as are the lessons learned along the way and the future research outlook. These self-assembled hosts are the closest mimics of enzymes to date, as they are capable of size- and shape-selective molecular recognition, substrate activation and turnover, as well as showing less common ‘biomimetic’ properties such as the ability to employ cofactors in reactivity, and alter the prevailing mechanism of the catalyzed reactions. 1 Introduction 2 Paddlewheels and Self-Sorting Behavior 3 First-Row Transition-Metal-Mediated Assembly: Sorting and Stereochemical Control 4 Post-Assembly Reactivity 5 Molecular Recognition and Catalysis 6 Conclusions and Outlook
  2. Self-assembled metal nanoparticle-polymer nanocomposite particles as nanoreactors are a promising approach for performing liquid phase reactions using water as a bulk solvent. In this work, we demonstrate rapid, scalable self-assembly of metal nanoparticle catalyst-polymer nanocomposite particles via Flash NanoPrecipitation. The catalyst loading and size of the nanocomposite particles can be tuned independently. Using nanocomposite particles as nanoreactors and the reduction of 4-nitrophenol as a model reaction, we study the fundamental interplay of reaction and diffusion. The induction time is affected by the sequence of reagent addition, time between additions, and reagent concentration. Combined, our experiments indicate the induction time is most influenced by diffusion of sodium borohydride. Following the induction time, scaling analysis and effective diffusivity measured using NMR indicate that the observed reaction rate are reaction- rather than diffusion-limited. Furthermore, the intrinsic kinetics are comparable to ligand-free gold nanoparticles. This result indicates that the polymer microenvironment does not de-activate or block the catalyst active sites.
  3. Chiral nanostructures have been attracting extensive interest in recent years primarily because of the unique materials properties that can be exploited for diverse applications. In this study, gold Janus nanoparticles, with hexanethiolates and 3-mercapto-1,2-propanediol segregated on the two hemispheres of the metal cores (dia. 2.7 ± 0.4 nm), self-assembled into vesicle-like, hollow nanostructures in both water and organic media, and exhibited apparent plasmonic circular dichroism (PCD) absorption in the visible range. This was in contrast to individual Janus nanoparticles, bulk-exchange nanoparticles where the two ligands were homogeneously mixed on the nanoparticle surface, or nanoparticles capped with only one kind of ligand. The PCD signals were found to become intensified with increasing coverage of the 3-mercapto-1,2-propanediol ligands on the nanoparticle surface. This was accounted for by the dipolar property of the structurally asymmetrical Janus nanoparticles, and theoretical simulations based on first principles calculations showed that when the nanoparticle dipoles self-assembled onto the surface of a hollow sphere, a vertex was formed which gave rise to the unique chiral characteristics. The resulting chiral nanoparticle vesicles could be exploited for the separation of optical enantiomers, as manifested in the selective identification and separation of d -alanine from the l -isomer.
  4. Self-assembled Fe4 L 6 cage complexes with variable internal functions can be synthesized from a 2,7-dibromocarbazole ligand scaffold, which orients six functional groups to the cage interior. Both ethylthiomethylether and ethyldimethylamino groups can be incorporated. The cages show strong ligand-centered fluorescence emission and a broad range of guest binding properties. Coencapsulation of neutral organic guests is favored in the larger, unfunctionalized cage cavity, whereas the thioether cage has a more sterically hindered cavity that favors 1 : 1 guest binding. Binding affinities up to 10 6 M −1 in CH3 CN are seen. The dimethylamino cage is more complex, as the internal amines display partial protonation and can be deprotonated by amine bases. This amine cage displays affinity for a broad range of neutral organic substrates, with affinities and stoichiometries comparable to that of the similarly sized thioether cage. These species show that simple variations in ligand backbone allow variations in the number and type of functions that can be displayed towards the cavity of self-assembled hosts, which will have applications in biomimetic sensing, catalysis and molecular recognition.
  5. Entropy plays a key role in the self-assembly of colloidal particles. Specifically, in the case of hard particles, which do not interact or overlap with each other during the process of self-assembly, the free energy is minimized due to an increase in the entropy of the system. Understanding the contribution of entropy and engineering it is increasingly becoming central to modern colloidal self-assembly research, because the entropy serves as a guide to design a wide variety of self-assembled structures for many technological and biomedical applications. In this work, we highlight the importance of entropy in different theoretical and experimental self-assembly studies. We discuss the role of shape entropy and depletion interactions in colloidal self-assembly. We also highlight the effect of entropy in the formation of open and closed crystalline structures, as well as describe recent advances in engineering entropy to achieve targeted self-assembled structures.