skip to main content


Title: Controlled self-sorting in self-assembled cage complexes
In this frontier article we highlight recent advances in subcomponent self-sorting in self-assembled metal–ligand cage complexes, with a focus on selective discrimination between ligands that contain highly similar metal-coordinating groups. Effects such as varying ligand length, coordination angle and backbone flexibility, as well as the introduction of secondary weak forces such as hydrogen bonds can be exploited to favor either narcissistic or social self-sorting. We highlight these creative solutions, and emphasize the challenges that remain in the development of functional self-assembled heterocomplexes.  more » « less
Award ID(s):
1708019
NSF-PAR ID:
10067374
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
46
Issue:
43
ISSN:
1477-9226
Page Range / eLocation ID:
14719 to 14723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This Account describes our efforts over the last decade to synthesize self-assembled metal–ligand cage complexes that display reactive functional groups on their interiors. This journey has taken us down a variety of research avenues, including studying the mechanism of reversible self-assembly, analyzing ligand self-sorting properties, post-assembly reactivity, molecular recognition, and binding studies, and finally reactivity and catalysis. Each of these individual topics are discussed here, as are the lessons learned along the way and the future research outlook. These self-assembled hosts are the closest mimics of enzymes to date, as they are capable of size- and shape-selective molecular recognition, substrate activation and turnover, as well as showing less common ‘biomimetic’ properties such as the ability to employ cofactors in reactivity, and alter the prevailing mechanism of the catalyzed reactions. 1 Introduction 2 Paddlewheels and Self-Sorting Behavior 3 First-Row Transition-Metal-Mediated Assembly: Sorting and Stereochemical Control 4 Post-Assembly Reactivity 5 Molecular Recognition and Catalysis 6 Conclusions and Outlook 
    more » « less
  2. Rationale

    Coordinatively driven self‐assembly of transition metal ions and bidentate ligands gives rise to organometallic complexes that usually contain superimposed isobars, isomers, and conformers. In this study, the double dispersion ability of ion mobility mass spectrometry (IM‐MS) was used to provide a comprehensive structural characterization of the self‐assembled supramolecular complexes by their mass and charge, revealed by the MS event, and their shape and collision cross‐section (Ω), revealed by the IM event.

    Methods

    Self‐assembled complexes were synthesized by reacting a bis(terpyridine) ligand exhibiting a 60odihedral angle between the two ligating terpyridine sites (T) with divalent Zn, Ni, Cd, or Fe. The products were isolated as (Metal2+[T])n(PF6)2nsalts and analyzed using IM‐MS after electrospray ionization (ESI) which produced several charge states from eachn‐mer, depending on the number of PF6ˉ anions lost upon ESI. Experimental Ω data, derived using IM‐MS, and computational Ω predictions were used to elucidate the size and architecture of the complexes.

    Results

    Only macrocyclic dimers, trimers, and tetramers were observed with Cd2+, whereas Zn2+formed the same plus hexameric complexes. These two metals led to the simplest product distributions and no linear isomers. In sharp contrast, Ni2+and Fe2+formed all possible ring sizes from dimer to hexamer as well as various linear isomers. The experimental and theoretical Ω data indicated rather planar macrocyclic geometries for the dimers and trimers, twisted 3D architectures for the larger rings, and substantially larger sizes with spiral conformation for the linear congeners. Adding PF6ˉ to the same complex was found to mainly cause size contraction due to new stabilizing anion–cation interactions.

    Conclusions

    Complete structural identification could be accomplished using ESI‐IM‐MS. Our results affirm that self‐assembly with Cd2+and Zn2+proceeds through reversible equilibria that generate the thermodynamically most stable structures, encompassing exclusively macrocyclic architectures that readily accommodate the 60oligand used. In contrast, complexation with Ni2+and Fe2+, which form stronger coordinative bonds, proceeds through kinetic control, leading to more complex mixtures and kinetically trapped less stable architectures, such as macrocyclic pentamers and linear isomers.

     
    more » « less
  3. Abstract

    We report the synthesis of a novel metal–organic capsule constructed from six pyrogallol[4]arene macrocycles, which are switched together by 16 FeIIIand 16 CoIIions. This supramolecular structure is the first instance of a spheroidal heterometallic nanocage assembled through a one‐step metal–ligand coordination approach. This new assembly also demonstrates an important proof of concept through the formation of multiple heterometallic metal–metal interactions within the capsule framework. Photophysical and electrochemical studies of self‐assembled capsule films indicate their potential as semiconductors. These materials display unexpected photoelectric conversion properties, thus representing an emergent phenomenon in discrete metal–organic supramolecular assemblies.

     
    more » « less
  4. Abstract

    We report the synthesis of a novel metal–organic capsule constructed from six pyrogallol[4]arene macrocycles, which are switched together by 16 FeIIIand 16 CoIIions. This supramolecular structure is the first instance of a spheroidal heterometallic nanocage assembled through a one‐step metal–ligand coordination approach. This new assembly also demonstrates an important proof of concept through the formation of multiple heterometallic metal–metal interactions within the capsule framework. Photophysical and electrochemical studies of self‐assembled capsule films indicate their potential as semiconductors. These materials display unexpected photoelectric conversion properties, thus representing an emergent phenomenon in discrete metal–organic supramolecular assemblies.

     
    more » « less
  5. Self-assembled metal nanoparticle-polymer nanocomposite particles as nanoreactors are a promising approach for performing liquid phase reactions using water as a bulk solvent. In this work, we demonstrate rapid, scalable self-assembly of metal nanoparticle catalyst-polymer nanocomposite particles via Flash NanoPrecipitation. The catalyst loading and size of the nanocomposite particles can be tuned independently. Using nanocomposite particles as nanoreactors and the reduction of 4-nitrophenol as a model reaction, we study the fundamental interplay of reaction and diffusion. The induction time is affected by the sequence of reagent addition, time between additions, and reagent concentration. Combined, our experiments indicate the induction time is most influenced by diffusion of sodium borohydride. Following the induction time, scaling analysis and effective diffusivity measured using NMR indicate that the observed reaction rate are reaction- rather than diffusion-limited. Furthermore, the intrinsic kinetics are comparable to ligand-free gold nanoparticles. This result indicates that the polymer microenvironment does not de-activate or block the catalyst active sites. 
    more » « less