skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Colloidal size spectra, composition and estuarine mixing behavior of DOM in river and estuarine waters of the northern Gulf of Mexico
Award ID(s):
0850957
PAR ID:
10067386
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Geochimica et Cosmochimica Acta
Volume:
181
Issue:
C
ISSN:
0016-7037
Page Range / eLocation ID:
1 to 17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Estuarine exchange flow controls the salt balance and regulates biogeochemistry in an estuary. The Albemarle‐Pamlico estuarine system (APES) is the largest coastal lagoon in the U.S. and historically susceptible to a series of environmental issues including salt water intrusion and eutrophication, yet its estuarine exchange flow is poorly understood. Here, we investigate the estuarine exchange flow in the APES, its tributary estuaries (Pamlico and Neuse), and sub‐basin Albemarle Sound using the total exchange flow analysis framework based on results from a deterministic numerical model. We find the following: (a) Dynamics controlling estuarine exchange flow in the APES vary spatially and depend on timescales considered. At inlets, estuarine exchange flows respond to both tidal prism and residual water levels at weather‐to‐spring/neap timescales. At a long quasi‐steady timescale represented as annual means, estuarine exchange flow is dominated by barotropic flow. Within the tributary estuaries, estuarine exchange flows at timescales of wind periods are controlled by wind‐induced straining, whereas the quasi‐steady state condition is dominated by gravitational circulation. At Albemarle Sound, exchange flow is dominated by the residual water levels at weather‐to‐spring/neap timescales, while at quasi‐steady state it is controlled by barotropic flow. (b) At the quasi‐steady annual timescale, the salt content decreases with river discharge. At the weather‐to‐spring/neap timescales, salt content is insensitive to variations in estuarine exchange flow, except for within Albemarle Sound. (c) Estuarine exchange flow likely influences the biogeochemistry of the APES by playing a key role in regulating the flushing efficiency and material exchange, a role that has been previously overlooked. 
    more » « less
  2. Abstract The inflow to an estuary originates on the shelf. It flushes the estuary and can bring in nutrients, heat, salt, and hypoxic water, having consequences for estuarine ecosystems and fjordic glacial melt. However, the source of estuarine inflow has only been explored in simple models that do not resolve interactions between inflow and outflow outside of the estuarine channel. This study addressed the estuary inflow problem using variations on a three-dimensional primitive equation model of an idealized estuarine channel next to a sloping, unstratified shelf with mixing provided by a single frequency, 12-hour tide. Inflow was identified using particle tracking, momentum budgets, and Total Exchange Flow. Inflow sources were found in shelf water downstream of the estuary, river plume water, and shelf water upstream of the estuary. Downstream is defined here with respect to the direction of coastal trapped wave propagation, which is to the right for an observer looking seaward from the estuary mouth in the northern hemisphere. Downstream of the estuary and offshore of the plume, the dynamics were quasi-geostrophic, consistent with previous simple models. The effect of this inflowing current on the geometry of the river plume front was found to be small. Novel sources of inflow were identified which originated from within the plume and upstream of the estuary. 
    more » « less
  3. Human civilization relies on estuaries, and many estuarine ecosystem services are provided by microbial communities. These services include high rates of primary production that nourish harvests of commercially valuable species through fisheries and aquaculture, the transformation of terrestrial and anthropogenic materials to help ensure the water quality necessary to support recreation and tourism, and mutualisms that maintain blue carbon accumulation and storage. Research on the ecology that underlies microbial ecosystem services in estuaries has expanded greatly across a range of estuarine environments, including water, sediment, biofilms, biological reefs, and stands of seagrasses, marshes, and mangroves. Moreover, the application of new molecular tools has improved our understanding of the diversity and genomic functions of estuarine microbes. This review synthesizes recent research on microbial habitats in estuaries and the contributions of microbes to estuarine food webs, elemental cycling, and interactions with plants and animals, and highlights novel insights provided by recent advances in genomics. 
    more » « less