skip to main content


Title: Electrical response of novel carbon nanotubes embedded and carbon fiber Z‐axis reinforced jute/epoxy laminated composites

Novel conductive jute/epoxy laminated composites were fabricated by embedding carbon nanotubes (CNTs) in the matrix and flocking short carbon fibers between the laminates. A three‐dimensional electrical conductive network was generated inside the composites and the electrical resistivity values were measured using a four circumferential probe measurement system. A parametric study was performed to investigate the effect of three different weight percentages of CNTs (0%, 0.025% and 0.1%), two different carbon fiber lengths (150µm and 350µm), four different carbon fiber flock densities (500, 1000, 1500 and 2000 fibers/mm2) and two different laminates' orientations ((0‐0‐0‐0)Tand (0‐90‐0‐90)T) on the resistivity values of the composites. Composites with the lowest resistivity value of 0.019 Ohms‐m was achieved for 0.1 wt.% of CNTs and 350µm with flock density of 2000 fibers/mm2for ((0‐0‐0‐0)Tlaminate orientation. The increase in flock length from 150µm to 350µm significantly decreased the resistivity by several orders because 350µm generated better conductive network with neighbouring carbon fibers as well as with CNTs. The flock density of carbon fibers has a dominant effect on 150µm long fibers compared to 350µm when the flock density increased from 1000 fibers/mm2to 1500 fibers/mm2. Variation of both CNTs weight percentage and laminate orientation did not have significant effect on change in resistivity. The electrical measurement investigation of these novel conductive natural fiber composites will have applications in in‐situ damage sensing and structural health monitoring. POLYM. COMPOS., 40:E1189–E1198, 2019. © 2018 Society of Plastics Engineers

 
more » « less
PAR ID:
10067480
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Polymer Composites
Volume:
40
Issue:
S2
ISSN:
0272-8397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An experimental study is preformed to investigate the in-situ damage sensing capabilities of intra-ply hybrid carbon/glass laminate and epoxy composites under quasi-static interlaminar shear loading. A three-dimensional electrical sensory network is generated inside the composites through embedded carbon nanotubes (CNTs) in an epoxy matrix along with the carbon fibers in the intra-ply hybrid laminates. CNTs are dispersed in the epoxy matrix using a combination of ultrasonication and shear mixing techniques. Four circumferential ring probes are used to examine the electrical response under interlaminar shear load. The effect of four different intra-ply orientations (((0–90)C, where carbon fibers are oriented along the loading direction), ((0–90)G, where glass fibers are oriented along the loading direction), ((45/−45, where glass and carbon fibers are oriented at 45o/−45oand the laminates are repeated), and ((45/−45)A, where glass and carbon fibers are oriented at 45o/−45oand the laminates are alternated)) on the shear constitutive behavior and the damage detection are discussed. Intra-ply orientations of (45/−45) and (45/−45)Ashowed higher interlaminar shear strength and shear strain at break compared to (0/90)Cand (0/90)Gorientations. Out of all four orientations, (45/−45)Aprovided a better resolution of electrical response for damage sensing applications.

     
    more » « less
  2. An experimental study was performed to investigate damage sensing and fracture toughness of multifunctional conductive glass fiber composites under dynamic mode-I fracture loading. Carbon nanotubes (CNTs) were dispersed within the epoxy matrix using a shear mixing and sonicating process. An electrostatic wet flocking process was used to reinforce milled short PAN-based carbon fibers onto each of the layers of glass fiber fabric along the thickness direction in the composites. These layers of flocked fabric were stacked, and a vacuum infusion process was employed to fabricate the composites. The parametric study consisted of two carbon fiber lengths (80 μm and 150 μm) and two fiber densities (1000 fibers/mm2and 2000 fibers/mm2) and was performed to investigate the damage sensing capabilities of a three-dimensional conductive network generated through CNTs and carbon fibers. A double cantilever beam (DCB) configuration was considered, and a modified Hopkinson pressure bar setup along with a high-speed camera was used to investigate dynamic fracture toughness of the composites. The piezo-resistance response of the composites during dynamic fracture was measured using a modified system of four probes. For comparison, composites were also characterized for fracture toughness and piezo-resistance under quasi-static fracture loading conditions. The addition of short, milled PAN-based carbon fibers significantly increased the fracture toughness of glass/epoxy composites. The piezo-resistance response of the composites was easily correlated with instances of sudden crack growth during static fracture loading.

     
    more » « less
  3. Moisture is a known issue for carbon fiber reinforced polymer (CFRP) manufacturing. During the process, in which a CFRP prepreg is carefully thawed, cut, stacked, and cured into a laminate, any bad moisture control can cause voids, affect the curing, and degrade the laminate. Recent studies of carbon nanofiber z-threaded CFRP (i.e., ZT-CFRP) prepreg and its laminates showed significant multifunctional improvements in the mechanical strengths, toughness, thermal conductivity, and electrical conductivity. The carbon nanofibers zig-zag thread among the carbon fibers in the through-thickness direction (i.e., z-direction) and mechanically interlock the fiber system together to form an effective 3D-fiber-network reinforced laminate. This paper presents a preliminary experimental study on the ZT-CFRP prepreg when facing the moisture exposure during the prepreg handling and lamination process. Both the ZT-CFRP and traditional CFRP prepregs, subjected to different humidity conditions, will be cut, and cured into laminate samples. The samples will be tested for their interlaminar shear strengths (ILSS) and hardness. Microscope pictures of the samples' fracture patterns will be compared for explaining the combined impact of the moistures and the carbon nanofiber z-threading strategy on the laminates' interlaminar shear strength and curing state. 
    more » « less
  4. The interface characteristics of the matrix and fibers significantly influence the evolution of residual stress in composite materials. In this study, we provide a methodology for reducing the residual stress in laminated composites by modifying the thermomechanical properties at the fiber–matrix interface. A hydrothermal chemical growth method was used to grow Zinc Oxide nanowires on the carbon fibers. We then utilized a novel digital image correlation approach to evaluate strains and residual stresses, in situ, throughout the autoclave curing of composites. We find that interface modification results in the reduction of residual stress and an increase in laminate strength and stiffness. Upon growing ZnO NWs on the carbon fibers, the maximum in situ in-plane strain components were reduced by approximately 55% and 31%, respectively, while the corresponding maximum residual stresses were decreased by 50.8% and 49.33% for the cross-play laminate [0°/90°] layup in the x and y directions, respectively. For the [45°/-45°] angle ply layup in the x-direction, the strain was decreased by 27.3%, and the maximum residual stress was reduced by 41.5%, whereas in the y-direction, the strain was decreased by 166.3%, and the maximum residual stress was reduced by 17.8%. Furthermore, mechanical testing revealed that the tensile strength for the [45°/-45°] and [0°/90°] laminates increased by 130% and 20%, respectively, with the interface modification. 
    more » « less
  5. Carbon fiber reinforced polymer (CFRP) composites have been increasingly used to replace metal parts in many industries such as aerospace, marine, automotive, and sporting goods. The CFRP parts compared with their metallic counter parts have the advantages of lightweight, significantly higher tensile strength, stiffer, and corrosion resistant. On the other hand, compared with many metal parts, the CFRP parts have many well-known disadvantages including the lower toughness, lower through-thickness tensile and shear strengths, lower thermal conductivity, lower electrical conductivity, and lower operating temperature. These disadvantages have made the conversion from metal parts into CFRP parts challenging and costly to design, manufacture, and maintain. The use of nanoparticles in polymer has been studied in the recent two decades. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been dispersed in various thermoset and thermoplastic polymers and improved the mechanical, electrical, and thermal properties; however, the properties were not comparable to CFRP. Later, researchers tried to infuse CNTs or CNFs into either carbon fiber preforms [1] or glass fiber preforms [2] for improving the mechanical properties. But the results were marginal and with great uncertainty due to the challenges of nanoparticle dispersion, filtering, and alignment while being infused through the fiber preform. The glass fiber preform experiments ended with relatively more consistent improvement than the carbon fiber preform experiments since that the glass fiber preform has significantly larger pores than the carbon fiber preform' s. The small pore size presented a great challenge for infusing millions of unaligned long CNTs or CNFs through the carbon fiber preform without being filtered. To infuse long CNFs or CNTs through the carbon fiber preform and achieve reliable improvements, especially for 55% or higher carbon fiber volume fraction with increasingly tighter pores, an innovative plan for the processing and nano-reinforcing strategy is necessary. The z-threading strategy [3, 4, 5] has been reported to have consistent experimental successes in achieving the statistically meaningful improvement in multifunctional properties. The manufacturing steps of the CNF z-threaded CFRP (ZT-CFRP) are: (1) disperse the CNFs in a resin, (2) use a strong electrical field to align the CNFs in either the B-stage epoxy film or a CNF/resin impregnated sponge layer, whereas the CNFs are aligned in the through-thickness direction of the film or sponge layer. (3) place the resin film or sponge layer on a preheated dry carbon fiber fabric and press the resin film into the hot carbon fabric and allow the resin flow to carry the well-aligned CNFs to thread through the pores in the carbon fabric. (4) cool down the resin saturated and CNF z-threaded carbon fiber fabric to obtain the ZT-CFRP prepreg. (5) use the ZT-CFRP prepreg to make the ZT-CFRP laminate. Compared with the traditional CFRP, the ZT-CFRP laminates were reported of having improvement in the Mode-I delamination toughness, interlaminar shear strength, longitudinal compressive strength, through-thickness electrical conductivity, through-thickness thermal conductivity, and can reach the carbon fiber volume fraction of 55-80%. It is an effective approach to achieve a multifunctional CFRP for potentially expanding CFRP's applications. 
    more » « less