Oxytocin (OXT) is a peptide hormone and a neuropeptide that regulates various peripheral physiological processes and modulates behavioral responses in the central nervous system. While the humoral release occurs from the axons arriving at the median eminence, the neuropeptide is also released from oxytocinergic cell axons in various brain structures that contain its receptor, and from their dendrites in hypothalamic nuclei and potentially into the cerebrospinal fluid (CSF). Understanding oxytocin’s complex functions requires the knowledge on patterns of oxytocinergic projections in relationship to its receptor (OXTR). This study provides the first comprehensive examination of the oxytocinergic system in the prairie vole (
More Like this
-
Abstract Microtus ochrogaster ), an animal exhibiting social behaviors that mirror human social behaviors linked to oxytocinergic functioning. Using light and electron microscopy, we characterized the neuroanatomy of the oxytocinergic system in this species. OXT+ cell bodies were found primarily in the hypothalamus, and axons were densest in subcortical regions. Examination of the OXT+ fibers and their relationship to oxytocin receptor transcripts (Oxtr ) revealed that except for some subcortical structures, the presence of axons was not correlated with the amount ofOxtr across the brain. Of particular interest, the cerebral cortex that had high expression ofOxtr transcripts contained little to no fibers. Electron microscopy is used to quantify dense cored vesicles (DCV) in OXT+ axons and to identify potential axonal release sites. The ependymal cells that line the ventricles were frequently permissive of DCV-containing OXT+ dendrites reaching the third ventricle. Our results highlight a mechanism in which oxytocin is released directly into the ventricles and circulates throughout the ventricular system, may serve as the primary source for oxytocin that binds to OXTR in the cerebral cortex. -
Students often struggle with visualizing protein structures when working with two-dimensional textbook and lecture materials, so introducing them to 3D visualization software developed by and for structural biologists offers them a unique opportunity to work with authentic data while furthering their spatial reasoning skills and understanding of molecular structure and function. This article presents an active learning virtual laboratory in which students use authentic structural biology data to investigate the effects of both hypothetical and real-world SARS-CoV-2 mutations on the virus’s ability to bind to human ACE2 receptors and infect a host, causing COVID-19. Through this activity, introductory-level college students or advanced high school students gain a better understanding of applied biology, such as how vaccines and treatments are designed, as well as strengthening their understanding of core disciplinary concepts, such as the relationship between protein structure and function and the central dogma of molecular biology. While there were challenges during the pilot phase of activity development due to COVID-19 restrictions, students in the pilot groups came away from the activity with deeper understanding of the relationship between proteins and amino acid sequences and a new appreciation for the ways researchers design treatments for and study viruses.more » « less
-
Abstract The Great Unconformity is a widely distributed surface separating Precambrian rocks from overlying Phanerozoic sedimentary sequences. The causes and implications of this feature, and whether it represents a singular global event, are much debated. Here, we present new apatite (U‐Th)/He (AHe) thermochronologic data from the central Canadian Shield that constrain when the Precambrian basement last cooled to near‐surface temperatures, likely via exhumation, before deposition of overlying early Paleozoic sedimentary sequences that mark the Great Unconformity. AHe data from 11 samples (
n = 57) across a broad region define a similar date‐eU pattern, implying a common thermal history. Higher eU (>25 ppm) apatite form distinct flat profiles of reproducible dates at ∼510 ± 49 Ma (mean and 1σ standard deviation), while lower eU (<25 ppm) apatite define a positive date‐eU trend with younger dates. The data patterns, geologic context, and thermal history modeling point toward >3 km of erosion across the entire ∼450,000 km2study area between 650 and 440 Ma, followed by modest reheating during later burial. Plume activity associated with intracratonic basin formation or continental rifting/breakup may have caused this erosion event. The post‐650 Ma timing of the last major sub‐Great Unconformity exhumation phase in this region implies a late Great Unconformity that is younger than inferred elsewhere in North America. This suggests that this feature is likely the result of multiple temporally distinct erosion events with differing footprints and mechanisms.