- Award ID(s):
- 1739328
- PAR ID:
- 10068619
- Date Published:
- Journal Name:
- HoTSoS '18 Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security
- Page Range / eLocation ID:
- 1 to 10
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The adoption of digital technology in industrial control systems (ICS) enables improved control over operation, ease of system diagnostics and reduction in cost of maintenance of cyber physical systems (CPS). However, digital systems expose CPS to cyber-attacks. The problem is grave since these cyber-attacks can lead to cascading failures affecting safety in CPS. Unfortunately, the relationship between safety events and cyber-attacks in ICS is ill-understood and how cyber-attacks can lead to cascading failures affecting safety. Consequently, CPS operators are ill-prepared to handle cyber-attacks on their systems. In this work, we envision adopting Explainable AI to assist CPS oper-ators in analyzing how a cyber-attack can trigger safety events in CPS and then interactively determining potential approaches to mitigate those threats. We outline the design of a formal framework, which is based on the notion of transition systems, and the associated toolsets for this purpose. The transition system is represented as an AI Planning problem and adopts the causal formalism of human reasoning to asssit CPS operators in their analyses. We discuss some of the research challenges that need to be addressed to bring this vision to fruition.more » « less
-
In this paper, we demonstrate the feasibility of smart malware that advances state-of-the-art attacks by (i) indirectly attacking a computing infrastructure through a cyber-physical system (CPS) that manages the environment in which the computing enterprise operates, (ii) disguising its malicious actions as accidental failures, and (iii) self-learning attack strategies from cyber-physical system measurement data. We address all aspects of the malware, including the construction of the self-learning malware and the launch of a failure injection attack. We validate the attacks in a data-driven CPS simulation environment developed as part of this study.more » « less
-
Owing1 to an immense growth of internet-connected and learning-enabled cyber-physical systems (CPSs) [1], several new types of attack vectors have emerged. Analyzing security and resilience of these complex CPSs is difficult as it requires evaluating many subsystems and factors in an integrated manner. Integrated simulation of physical systems and communication network can provide an underlying framework for creating a reusable and configurable testbed for such analyses. Using a model-based integration approach and the IEEE High-Level Architecture (HLA) [2] based distributed simulation software; we have created a testbed for integrated evaluation of large-scale CPS systems. Our tested supports web-based collaborative metamodeling and modeling of CPS system and experiments and a cloud computing environment for executing integrated networked co-simulations. A modular and extensible cyber-attack library enables validating the CPS under a variety of configurable cyber-attacks, such as DDoS and integrity attacks. Hardware-in-the-loop simulation is also supported along with several hardware attacks. Further, a scenario modeling language allows modeling of alternative paths (Courses of Actions) that enables validating CPS under different what-if scenarios as well as conducting cyber-gaming experiments. These capabilities make our testbed well suited for analyzing security and resilience of CPS. In addition, the web-based modeling and cloud-hosted execution infrastructure enables one to exercise the entire testbed using simply a web-browser, with integrated live experimental results display.more » « less
-
Securing cyber-physical systems (CPS) like the Smart Grid against cyber attacks is making it imperative for the system defenders to plan for investing in the cybersecurity resources of cyber-physical critical infrastructure. Given the constraint of limited resources that can be invested in the cyber layer of the cyber-physical smart grid, optimal allocation of these resources has become a priority for the defenders of the grid. This paper proposes a methodology for optimizing the allocation of resources for the cybersecurity infrastructure in a smart grid using attack-defense trees and game theory. The proposed methodology uses attack-defense trees (ADTs) for analyzing the cyber-attack paths (attacker strategies) within the grid and possible defense strategies to prevent those attacks. The attack-defense strategy space (ADSS) provides a comprehensive list of interactions between the attacker and the defender of the grid. The proposed methodology uses the ADSS from the ADT analysis for a game-theoretic formulation (GTF) of attacker-defender interaction. The GTF allows us to obtain strategies for the defender in order to optimize cybersecurity resource allocation in the smart grid. The implementation of the proposed methodology is validated using a synthetic smart grid model equipped with cyber and physical components depicting the feasibility of the methodology for real-world implementation.more » « less
-
Security of cyber-physical systems (CPS) continues to pose new challenges due to the tight integration and operational complexity of the cyber and physical components. To address these challenges, this article presents a domain-aware, optimization-based approach to determine an effective defense strategy for CPS in an automated fashion—by emulating a strategic adversary in the loop that exploits system vulnerabilities, interconnection of the CPS, and the dynamics of the physical components. Our approach builds on an adversarial decision-making model based on a Markov Decision Process (MDP) that determines the optimal cyber (discrete) and physical (continuous) attack actions over a CPS attack graph. The defense planning problem is modeled as a non-zero-sum game between the adversary and defender. We use a model-free reinforcement learning method to solve the adversary’s problem as a function of the defense strategy. We then employ Bayesian optimization (BO) to find an approximate
best-response for the defender to harden the network against the resulting adversary policy. This process is iterated multiple times to improve the strategy for both players. We demonstrate the effectiveness of our approach on a ransomware-inspired graph with a smart building system as the physical process. Numerical studies show that our method converges to a Nash equilibrium for various defender-specific costs of network hardening.