Dayside Magnetospheric and Ionospheric Responses to a Foreshock Transient on 25 June 2008: 2. 2-D Evolution Based on Dayside Auroral Imaging
- Award ID(s):
- 0638587
- PAR ID:
- 10069630
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 123
- Issue:
- 8
- ISSN:
- 2169-9380; JGRA
- Page Range / eLocation ID:
- p. 6347-6359
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The role a geospace plume in influencing the efficiency of magnetopause reconnection is an open question with two contrasting theories being debated. A local‐control theory suggests that a plume decreases both local and global reconnection rates, whereas a global‐control theory argues that the global reconnection rate is controlled by the solar wind rather than local physics. Observationally, limited numbers of point measurements from spacecraft cannot reveal whether a local change affects the global reconnection. A distributed observatory is hence needed to assess the validity of the two theories. We use THEMIS and Los Alamos National Laboratory spacecraft to identify the occurrence of a geospace plume and its contact with the magnetopause. Global evolution and morphology of the plume is traced using GPS measurements. SuperDARN is then used to monitor the distribution and the strength of dayside reconnection. Two storm‐time geospace plume events are examined and show that as the plume contacts the magnetopause, the efficiency of reconnection decreases at the contact longitude. The amount of local decrease is 81% and 68% for the two events, and both values are consistent with the mass loading effect of the plume if the plume's atomic mass is ∼4 amu. Reconnection in the surrounding is enhanced, and when the solar wind driving is stable, little variation is seen in the cross polar cap potential. This study illuminates a pathway to resolve the role of cold dense plasma on solar wind‐magnetosphere coupling, and the observations suggest that plumes redistribute magnetopause reconnection activity without changing the global strength substantially.more » « less
-
Abstract This study investigates the impact of vertical ionospheric drift during daytime on the evolution of predawn equatorial plasma bubbles by conducting model simulations using “Sami3 is Another Model of the Ionosphere.” The upward drift of the ionosphere transports bubbles to higher altitudes, where their lifetime is set by the atomic oxygen photoionization rate. While the bubbles generated at predawn persist into dayside, the bubbles generated shortly after sunset diminish before sunrise. Therefore, post‐sunset bubbles do not contribute to daytime electron density irregularities. Bubbles maintain their field‐aligned characteristics throughout the daytime regardless of the vertical ionospheric drift. This property allows bubbles to exist near the magnetic equator despite poleward plasma transport by the fountain process. The shift of irregularity concentration to higher latitudes over time in satellite observations is explained by the combined effect of transport of bubbles to higher altitudes and rapid refilling of depletions near the magnetic equator.more » « less
-
Abstract We examine the statistical distribution of large‐scale Birkeland currents measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment in four unique categories of geomagnetic activity for the first time: quiet times, storm times, quiet‐time substorms, and storm‐time substorms. A novel method is employed to sort data into one of these four categories, and the categorizations are provided for future research. The mean current density is largest during substorms and its standard deviation is largest during geomagnetic storms. Current densities which are above a low threshold are more likely during substorms, but extreme currents are far more likely during geomagnetic storms, consistent with a paradigm in which geomagnetic storms represent periods of enhanced variability over quiet times. We demonstrate that extreme currents are most likely to flow within the Region 2 current during geomagnetic storms. This is unexpected in a paradigm of the current systems in which Region 1 current is generally larger.more » « less
An official website of the United States government
