skip to main content


Title: Heteroatom‐Doped Carbon Dots (CDs) as a Class of Metal‐Free Photocatalysts for PET‐RAFT Polymerization under Visible Light and Sunlight
Abstract

A key challenge of photoregulated living radical polymerization is developing efficient and robust photocatalysts. Now carbon dots (CDs) have been exploited for the first time as metal‐free photocatalysts for visible‐light‐regulated reversible addition–fragmentation chain‐transfer (RAFT) polymerization. Screening of diverse heteroatom‐doped CDs suggested that the P‐ and S‐doped CDs were effective photocatalysts for RAFT polymerization under mild visible light following a photoinduced electron transfer (PET) involved oxidative quenching mechanism. PET‐RAFT polymerization of various monomers with temporal control, narrow dispersity (Đ≈1.04), and chain‐end fidelity was achieved. Besides, it was demonstrated that the CD‐catalyzed PET‐RAFT polymerization was effectively performed under natural solar irradiation.

 
more » « less
Award ID(s):
1707490
NSF-PAR ID:
10069921
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
57
Issue:
37
ISSN:
1433-7851
Page Range / eLocation ID:
p. 12037-12042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A key challenge of photoregulated living radical polymerization is developing efficient and robust photocatalysts. Now carbon dots (CDs) have been exploited for the first time as metal‐free photocatalysts for visible‐light‐regulated reversible addition–fragmentation chain‐transfer (RAFT) polymerization. Screening of diverse heteroatom‐doped CDs suggested that the P‐ and S‐doped CDs were effective photocatalysts for RAFT polymerization under mild visible light following a photoinduced electron transfer (PET) involved oxidative quenching mechanism. PET‐RAFT polymerization of various monomers with temporal control, narrow dispersity (Đ≈1.04), and chain‐end fidelity was achieved. Besides, it was demonstrated that the CD‐catalyzed PET‐RAFT polymerization was effectively performed under natural solar irradiation.

     
    more » « less
  2. Abstract

    The photophysical process of localized surface plasmon resonance (LSPR) is, for the first time, exploited for broadband photon harvesting in photo‐regulated controlled/living radical polymerization. Efficient macromolecular synthesis was achieved under illumination with light wavelengths extending from the visible to the near‐infrared regions. Plasmonic Ag nanostructures were in situ generated on Ag3PO4photocatalysts in a reversible addition‐fragmentation chain transfer (RAFT) system, thereby promoting polymerization of various monomers following a LSPR‐mediated electron transfer mechanism. Owing to the LSPR‐enhanced broadband photon harvesting, high monomer conversion (>99 %) was achieved under natural sunlight within 0.8 h. The deep penetration of NIR light enabled successful polymerization with reaction vessels screened by opaque barriers. Moreover, by trapping active oxygen species generated in the photocatalytic process, polymerization could be implemented without pre‐deoxygenation.

     
    more » « less
  3. Abstract

    The photophysical process of localized surface plasmon resonance (LSPR) is, for the first time, exploited for broadband photon harvesting in photo‐regulated controlled/living radical polymerization. Efficient macromolecular synthesis was achieved under illumination with light wavelengths extending from the visible to the near‐infrared regions. Plasmonic Ag nanostructures were in situ generated on Ag3PO4photocatalysts in a reversible addition‐fragmentation chain transfer (RAFT) system, thereby promoting polymerization of various monomers following a LSPR‐mediated electron transfer mechanism. Owing to the LSPR‐enhanced broadband photon harvesting, high monomer conversion (>99 %) was achieved under natural sunlight within 0.8 h. The deep penetration of NIR light enabled successful polymerization with reaction vessels screened by opaque barriers. Moreover, by trapping active oxygen species generated in the photocatalytic process, polymerization could be implemented without pre‐deoxygenation.

     
    more » « less
  4. ABSTRACT

    An open‐to‐air method for the efficient synthesis of surface‐tethered polymer brushes based on photoinduced electron transfer‐reversible addition‐fragmentation chain transfer (PET‐RAFT) polymerization is reported. Key to this approach is an enzyme‐assisted strategy using glucose oxidase to facilitate thein situremoval of oxygen during the polymerization process. Control experiments in the absence of glucose oxidase confirm the importance of enzymatic deoxygenation for successful polymerization of a variety of acrylamide, methacrylate, and acrylate monomers. In accordance with controlled polymerization kinetics, a linear increase in brush height as a function of irradiation time for a range of light intensities is demonstrated. Importantly, the use of light to mediate growth and the inherent monomer versatility of PET‐RAFT allow for the facile fabrication of well‐defined polymer brushes under aqueous conditions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 70–76

     
    more » « less
  5. Abstract

    The photocatalyst Zn(II)meso‐tetra(4‐sulfonatophenyl)porphyrin (ZnTPPS) is found to substantially accelerate visible‐light‐initiated (red, yellow, green light) single unit monomer insertion (SUMI) ofN,N‐dimethylacrylamide into the reversible addition–fragmentation chain transfer (RAFT) agent, 4‐((((2‐carboxyethyl)thio)carbonothioyl)thio)‐4‐cyanopentanoic acid (RAFT1), in aqueous solution. Thus, under irradiation with red (633 nm) or yellow (593 nm) light with 50 mpm (moles per million mole of monomer) ZnTPPS at 30 °C, the rate enhancement provided by photoinduced energy or electron transfer (PET) is ≈sevenfold over the rate of direct photoRAFT‐SUMI (without catalyst), which corresponds to achieving full and selective reaction in hours versus days. Importantly, the selectivity, as judged by the absence of oligomers, is retained. Under green light at similar power, higher rates of SUMI are also observed. However, the degree of enhancement provided by PET‐RAFT‐SUMI over direct photoRAFT‐SUMI as a function of catalyst concentration is less and some oligomers are formed.

     
    more » « less