skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The biogeographical patterns of species richness and abundance distribution in stream diatoms are driven by climate and water chemistry
In this inter-continental study of stream diatoms, we asked three important but still unresolved ecological questions: 1) What factors drive the biogeography of species richness and species abundance distribution (SAD); 2) Are climate-related hypotheses, which have dominated the research on the latitudinal and altitudinal diversity gradients, adequate in explaining spatial biotic variability; and 3) Is the SAD response to the environment independent of richness? We tested a number of climatic theories and hypotheses (i.e., the species-energy theory, the metabolic theory, the energy variability hypothesis, and the climatic tolerance hypothesis) but found no support for any of these concepts as the relationships of richness with explanatory variables were non-existent, weak or unexpected. Instead, we demonstrated that diatom richness and SAD evenness generally increased with temperature seasonality and at mid- to high total phosphorus concentrations. The spatial patterns of diatom richness and the SAD—mainly longitudinal in the US, but latitudinal in Finland—were defined primarily by the covariance of climate and water chemistry with space. The SAD was not entirely controlled by richness, emphasizing its utility for ecological research. Thus, we found support for the operation of both climate and water chemistry mechanisms in structuring diatom communities, which underscores their complex response to the environment and the necessity for novel predictive frameworks.  more » « less
Award ID(s):
1745348
PAR ID:
10070196
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The American naturalist
Volume:
192
Issue:
5
ISSN:
0003-0147
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract AimThe latitudinal diversity gradient of increasing species richness from poles to equator is one of the most striking and pervasive spatial patterns of biodiversity. Climate appears to have been key to the formation of the latitudinal diversity gradient, but the processes through which climate shaped species richness remain unclear. We tested predictions of the time for speciation, carrying capacity and diversification rate latitudinal diversity gradient hypotheses in a trans‐marine/freshwater clade of fishes. LocationGlobal in marine and freshwater environments. TaxonClupeiformes (anchovies, herrings, sardines and relatives). MethodsWe tested predictions of latitudinal diversity gradient hypotheses using a molecular phylogeny, species distribution data and phylogenetic comparative approaches. To test the time for speciation hypothesis, we conducted ancestral state reconstructions to infer the ages of temperate, subtropical and tropical lineages and frequency of evolutionary transitions between climates. We tested the carry capacity hypothesis by characterizing changes in net diversification rates through time. To test the diversification rate hypothesis, we qualitatively compared the diversification rates of temperate, subtropical and tropical lineages and conducted statistical tests for associations between latitude and diversification rates. ResultsWe identified four transitions to temperate climates and two transitions out of temperate climates. We found no differences in diversification rates among temperate and tropical clupeiforms. Net diversification rates remained positive in crown Clupeiformes since their origin ~150 Ma in both tropical and temperate lineages. Climate niche characters exhibited strong phylogenetic signal. All temperate clupeiform lineages arose <50 Ma, after the Early Eocene Climatic Optimum. Main conclusionsOur results support the time for speciation hypothesis, which proposes that climate niche conservatism and fluctuations in the extent of temperate climates limited the time for species to accumulate in temperate climates, resulting in the latitudinal diversity gradient. We found no support for the carrying capacity or diversification rate hypotheses. 
    more » « less
  2. Global climatic fluctuation has significantly impacted biodiversity by shaping adaptations across numerous species. Pleistocene climate changes notably affected species’ geographic distributions and population sizes, especially fostering post-glacial expansions in temperate regions. Evolutionary theory suggests spatial sorting of morphological traits associated with dispersal in recently expanded species. However, evidence of predicted intraspecific trait variation is scant. We investigated intraspecific trait variation in five lizard species along a forest-savanna gradient affected by Pleistocene climate. Lizards serve as an ideal group to test these ideas due to climate’s known influence on their morphological traits linked to essential functions like feeding and locomotion. We assessed two hypotheses: (i) niche variation and (ii) spatial sorting. For the niche variation hypothesis, we predicted increased intraspecific variability in head dimensions with distance from stable areas. For spatial sorting, we anticipated larger hind limb sizes with increased distance from stable areas. We gathered data on five quantitative traits from 663 samples across species. There was no evidence supporting either hypothesis across the five species. Limited sample sizes, challenges in habitat modeling, or other factors might explain this lack of support. Nonetheless, our study illuminates complexities in exploring trait variation within species. The data collected here, although inconclusive, represent a crucial test for evolutionary theory. 
    more » « less
  3. Abstract AimThe standard latitudinal diversity gradient (LDG), in which species richness decreases from equator to pole, is a pervasive pattern observed in most organisms. Some lineages, however, exhibit inverse LDGs. Seemingly problematic, documenting and studying contrarian groups can advance understanding of LDGs generally. Here, we identify one such contrarian clade and use a historical approach to evaluate alternative hypotheses that might explain the group's atypical diversity pattern. We focus on the biogeographical conservatism hypothesis (BCH) and the diversification rate hypothesis (DRH). LocationGlobal. TaxonAnts (Hymenoptera: Formicidae: Stenammini). MethodsWe examined the shape of the LDG in Stenammini by plotting latitudinal midpoints for all extant, described species. We inferred a robust genome‐scale phylogeny using UCE data. We estimated divergence dates using beast2 and tested several biogeographical models inBioGeoBEARS. To examine diversification rates and test for a correlation between rate and latitude, we used the programs BAMM and STRAPP, respectively. ResultsStenammini has a skewed inverse LDG with a richness peak in the northern temperate zone. Phylogenomic analyses revealed five major clades and several instances of non‐monophyly among genera (Goniomma,Aphaenogaster). Stenammini and all its major lineages arose in the northern temperate zone. The tribe originated ~51 Ma during a climatic optimum and then diversified and dispersed southward as global climate cooled. Stenammini invaded the tropics at least seven times, but these events occurred more recently and were not linked with increased diversification. There is evidence for a diversification rate increase in HolarcticAphaenogaster + Messor, but we found no significant correlation between latitude and diversification rate generally. Main ConclusionsOur results largely support the BCH as an explanation for the inverse latitudinal gradient in Stenammini. The clade originated in the Holarctic and likely became more diverse there due to center‐of‐origin, time‐for‐speciation and niche conservatism effects, rather than latitudinal differences in diversification rate. 
    more » « less
  4. Species richness of marine mammals and birds is highest in cold, temperate seas—a conspicuous exception to the general latitudinal gradient of decreasing diversity from the tropics to the poles. We compiled a comprehensive dataset for 998 species of sharks, fish, reptiles, mammals, and birds to identify and quantify inverse latitudinal gradients in diversity, and derived a theory to explain these patterns. We found that richness, phylogenetic diversity, and abundance of marine predators diverge systematically with thermoregulatory strategy and water temperature, reflecting metabolic differences between endotherms and ectotherms that drive trophic and competitive interactions. Spatial patterns of foraging support theoretical predictions, with total prey consumption by mammals increasing by a factor of 80 from the equator to the poles after controlling for productivity. 
    more » « less
  5. Mistletoe spatial patterns are poorly understood on a macroecological scale. Previous research conducted at the family-level on Loranthaceae from Australia demonstrated that unlike most plants, mistletoe species richness patterns do not correlate significantly with water and energy input. However, field studies suggested a relationship between the structure of the host-parasite union (haustorium) and environment. We hypothesize that haustorial type influences relationships between the abiotic environment and mistletoe spatial patterns. To investigate this hypothesis, we constructed ecological niche models for individual haustorial types. We have previously compared the distributions of haustorial types in both geographic and environmental space using geographic mapping and PCA, respectively. Here, we expand on our study by examining species richness, constructing predictive models, and emphasizing habitat types. Using the haustorial specimen collection housed at the UC Herbarium and relevant literature, we identified the haustorial type of 55 of the 73 Australia Loranthaceae mistletoe species. Using geographic distributional data from the Atlas of Living Australia and environmental data from WorldClim, we plotted haustorial groups in both geographic and environmental space, compared clusters in principle component space, and calculated Hutchinsonian niche overlap. We used regression to analyze the relationship between species richness and environmental variables at the haustorial level. Lastly, we constructed maximum entropy models to estimate the probability of occurrence of each haustorial group, analyzing the relative contributions of each variable to each model. We discovered that haustorial type is relatively conserved among the Australian Loranthaceae mistletoe genera, with seven out of nine genera exhibiting one haustorial type. Species with epicortical roots (ER), the ancestral character, are exclusively associated with coastal regions while those with derived haustorial types occur across the continent, including desert regions. Environmental analyses confirmed that species with ER are found in regions with milder temperatures and higher precipitation than derived types. Species richness patterns of some haustorial types, including ER, are significantly correlated with most environmental variables, while derived haustorial types are not. Maxent models for species with ER haustoria predict the highest probability of occurrence for coastal regions, while models constructed for derived types feature less bias for coastal regions. Our models demonstrate that relationships between the abiotic environment and mistletoe spatial patterns depend in part on the haustorial type. Hypotheses proposed to explain relationships between abiotic constraint on distribution and haustorial type include differences in water uptake efficiency, exposure of haustoria to the environment, longevity of haustoria, and host preference of species. 
    more » « less