skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Focused ortho -Lithiation and Functionalization of p -Bromo- and p -Iodoanisole: Focused ortho -Lithiation and Functionalization of p -Bromo- and p -Iodoanisole
NSF-PAR ID:
10070242
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
European Journal of Organic Chemistry
Volume:
2018
Issue:
32
ISSN:
1434-193X
Page Range / eLocation ID:
4400 to 4406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cp*Ir( iii ) complexes have been shown to be effective for the halogenation of N , N -diisopropylbenzamides with N -halosuccinimide as a suitable halogen source. The optimized conditions for the iodination reaction consist of 0.5 mol% [Cp*IrCl 2 ] 2 in 1,2-dichloroethane at 60 °C for 1 h to form a variety of iodinated benzamides in high yields. Increasing the catalyst loading to 6 mol% and the time to 4 h enabled the bromination reaction of the same substrates. Reactivity was not observed for the chlorination of these substrates. A variety of functional groups on the para -position of the benzamide were well tolerated. Kinetic studies showed the reaction dependence is first order in iridium, positive order in benzamide, and zero order in N -iodosuccinimide. A KIE of 2.5 was obtained from an independent H/D kinetic isotope effect study. Computational studies (DFT-BP3PW91) indicate that a CMD mechanism is more likely than an oxidative addition pathway for the C–H bond activation step. The calculated functionalization step involves an Ir( v ) species that is the result of oxidative addition of acetate hypoiodite that is generated in situ from N -iodosuccinimide and acetic acid. 
    more » « less