skip to main content

Title: Direct‐Current Triboelectric Nanogenerator Realized by Air Breakdown Induced Ionized Air Channel

The air breakdown phenomenon is generally considered as a negative effect in previous research on triboelectric nanogenerators (TENGs), which is always accompanied by air ionization. Here, by utilizing the air breakdown induced ionized air channel, a direct‐current triboelectric nanogenerator (DC‐TENG) is designed for harvesting contact‐separation mechanical energy. During working process, the charges first transfer from bottom to top electrodes through an external circuit in contact state, then flow back via the ionized air channel created by air breakdown in the separation process. So a unidirectional flow of electrical charges can be observed in the external circuit. With repeating contact‐separation cycles, continuous pulsed DC output through the external circuit can be realized. This working mechanism was verified by real‐time electrode potential monitoring, photocurrent signal detection, and controllable discharging observation. The DC‐TENG can be used for directly and continuously charging an energy storage unit and/or driving electronic devices without using a bridge rectifier. Owing to its simplicity in structure, the mechanism is further applied to fabricate the first flexible DC‐TENG. This research provides a significant fundamental study for DC‐TENG technology and may expand its application in flexible electronics and flexible self‐charging power systems.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper demonstrates that air‐stable radicals enhance the stability of triboelectric charge on surfaces. While charge on surfaces is often undesirable (e.g., static discharge), improved charge retention can benefit specific applications such as air filtration. Here, it is shown that self‐assembled monolayers (SAMs) containing air‐stable radicals, 2,2,6,6‐tetramethylpiperidin‐1‐yl)oxidanyl (TEMPO), hold the charge longer than those without TEMPO. Charging and retention are monitored by Kelvin Probe Force Microscopy (KPFM) as a function of time. Without the radicals on the surface, charge retention increases with the water contact angle (hydrophobicity), consistent with the understanding that surface water molecules can accelerate charge dissipation. Yet, the most prolonged charge retention is observed in surfaces treated with TEMPO, which are more hydrophilic than untreated control surfaces. The charge retention decreases with reducing radical density by etching the TEMPO‐silane with tetrabutylammonium fluoride (TBAF) or scavenging the radicals with ascorbic acid. These results suggest a pathway toward increasing the lifetime of triboelectric charges, which may enhance air filtration, improve tribocharging for patterning charges on surfaces, or boost triboelectric energy harvesting.

    more » « less
  2. Abstract

    Triboelectric nanogenerators (TENGs) are devices capable of effectively harvesting electrical energy from mechanical motion prevalent around us. With the goal of developing TENGs with a small environmental footprint, herein we present the potential of using rubber and paper as biological materials for constructing triboelectric nanogenerators. We explored the performance of these TENGs with various contact material combinations, electrode sizes, and operational frequencies. The optimally configured TENG achieved a maximum open circuit output voltage of over 30 V, and a short circuit current of around 3 µA. Additionally, this optimally configured TENG was capable of charging various capacitors and achieved a maximum power output density of 21 mW/m2. This work demonstrates that biologically derived materials can be used as effective, sustainable, and low-cost contact materials for the development of triboelectric nanogenerators with minimal environmental footprint.

    more » « less
  3. Triboelectric energy harvesters or nanogenerators exploit both contact electri cation and electrostatic induction to scavenge excess energy from random motions of mechanical structures. This study focuses on the modeling of triboelectric energy harvesters in the con guration of contact-separation impact oscillators. While mechanical and electrostatic elements in such systems can be satisfactorily modeled based on existing theories, the underlying physics of contact electri cation is still under debate. The aim of this work is to introduce the surface charge density of dielectric layers as a variable into the macroscopic equations of motion of triboelectric impact oscillators by experimentally investigating the relation between the impact force and the charge transfer during contact electri cation. Specifi cally, specimens with selected pairs of materials are put under a solenoid-driven pressing tester which charges the specimens with a vertical force whose magnitude, frequency and duty cycle can be controlled. An electrometer is used to monitor the short circuit charge flow between the electrodes from which the charge accumulation on dielectric layers can be extracted. With results from parameter-sweep tests, the produced map from contact force to surface charge density can be integrated into equations of motion via curve fitting or interpolation. 
    more » « less
  4. Abstract

    Multifunctional metamaterials (MFMs) capable of energy harvesting and vibration control are particularly attractive for smart structures, wearable/biointegrated electronics, and intelligent robotics. Here, a novel MFM based on triboelectric nanogenerators (TENGs), which can harvest environmental energy and reduce vibration simultaneously, is reported. The unit cells of the MFM consist of a local resonator, an integrated contact‐ separation mode TENG, and spiral‐shaped connecting beams. A multiphysics theoretical model is developed for quantitatively evaluating the performance of the MFM by including the mechanical and electrical fields interactions, which is further validated by experimental testing. It is demonstrated that the TENG‐based MFM can not only effectively harvest vibration energy to power electronics but also dramatically suppress low‐frequency mechanical vibration. This work provides a new design and model for developing novel TENG‐based MFMs for advanced smart systems used in a variety of applications.

    more » « less
    more » « less