skip to main content


Title: WiFi-Enabled Smart Human Dynamics Monitoring
The rapid pace of urbanization and socioeconomic development encourage people to spend more time together and therefore monitoring of human dynamics is of great importance, especially for facilities of elder care and involving multiple activities. Traditional approaches are limited due to their high deployment costs and privacy concerns (e.g., camera-based surveillance or sensor-attachment-based solutions). In this work, we propose to provide a fine-grained comprehensive view of human dynamics using existing WiFi infrastructures often available in many indoor venues. Our approach is low-cost and device-free, which does not require any active human participation. Our system aims to provide smart human dynamics monitoring through participant number estimation, human density estimation and walking speed and direction derivation. A semi-supervised learning approach leveraging the non-linear regression model is developed to significantly reduce training efforts and accommodate different monitoring environments. We further derive participant number and density estimation based on the statistical distribution of Channel State Information (CSI) measurements. In addition, people's walking speed and direction are estimated by using a frequency-based mechanism. Extensive experiments over 12 months demonstrate that our system can perform fine-grained effective human dynamic monitoring with over 90% accuracy in estimating participants number, density, and walking speed and direction at various indoor environments.  more » « less
Award ID(s):
1717356
NSF-PAR ID:
10072408
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Conference on Embedded Network Sensor Systems
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To promote energy-efficient operations in residential and office buildings, non-intrusive load monitoring (NILM) techniques have been proposed to infer the fine-grained power consumption and usage patterns of appliances from power-line measurement data. Fine-grained monitoring of everyday appliances (such as toasters and coffee makers) can not only promote energy-efficient building operations, but also provide unique insights into the context and activities of individuals. Current building-level NILM techniques are unable to identify the consumption characteristics of relatively low-load appliances, whereas smart-plug based solutions incur significant deployment and maintenance costs. In this paper, we investigate an intermediate architecture, where smart circuit breakers provide measurements of aggregate power consumption at room (or section) level granularity. We then investigate techniques to identify the usage and energy consumption of individual appliances from such measurements. We first develop a novel correlation-based approach called CBPA to identify individual appliances based on both their unique transient and steady-state power signatures. While promising, CBPA fails when the set of candidate appliances is too large. To further improve the accuracy of appliance level usage estimation, we then propose a hybrid system called AARPA, which uses mobile sensing to first infer high-level activities of daily living (ADLs), and then uses knowledge of such ADLs to effectively reduce the set of candidate appliances that potentially contribute to the aggregate readings at any point. We evaluate two variants of this algorithm, and show, using real-life data traces gathered from 10 domestic users, that our fusion of mobile and power-line sensing is very promising: it identified all devices that were used in each data trace, and it identified the usage duration and energy consumption of low-load consumer appliances with 87% accuracy. 
    more » « less
  2. User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This paper supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV and thermostat, etc. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep learning based user authentication scheme to accurately identify each individual user. Extensive experiments in two typical indoor environments, a university office and an apartment, are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% and 91% authentication accuracy with 11 subjects through walking and stationary activities, respectively. 
    more » « less
  3. null (Ed.)
    User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This article supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV, and smart thermostat, and so on. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep-learning-based user authentication scheme to accurately identify each individual user. To mitigate the signal distortion caused by surrounding people’s movements, our deep learning model exploits a CNN-based architecture that constructively combines features from multiple receiving antennas and derives more reliable feature abstractions. Furthermore, a transfer-learning-based mechanism is developed to reduce the training cost for new users and environments. Extensive experiments in various indoor environments are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% authentication accuracy with 11 subjects through different activities. 
    more » « less
  4. We explore the possibility of using a single monocular camera to forecast the time to collision between a suitcase-shaped robot being pushed by its user and other nearby pedestrians. We develop a purely image-based deep learning approach that directly estimates the time to collision without the need of relying on explicit geometric depth estimates or velocity information to predict future collisions. While previous work has focused on detecting immediate collision in the context of navigating Unmanned Aerial Vehicles, the detection was limited to a binary variable (i.e., collision or no collision). We propose a more fine-grained approach to collision forecasting by predicting the exact time to collision in terms of milliseconds, which is more helpful for collision avoidance in the context of dynamic path planning. To evaluate our method, we have collected a novel large-scale dataset of over 13,000 indoor video segments each showing a trajectory of at least one person ending in a close proximity (a near collision) with the camera mounted on a mobile suitcase-shaped platform. Using this dataset, we do extensive experimentation on different temporal windows as input using an exhaustive list of state-of-the-art convolutional neural networks (CNNs). Our results show that our proposed multi-stream CNN is the best model for predicting time to near-collision. The average prediction error of our time to near collision is 0.75 seconds across our test environments. 
    more » « less
  5. Translating fine-grained activity detection (e.g., phone ring, talking interspersed with silence and walking) into semantically meaningful and richer contextual information (e.g., on a phone call for 20 minutes while exercising) is essential towards enabling a range of healthcare and human-computer interaction applications. Prior work has proposed building ontologies or temporal analysis of activity patterns with limited success in capturing complex real-world context patterns. We present TAO, a hybrid system that leverages OWL-based ontologies and temporal clustering approaches to detect high-level contexts from human activities. TAO can characterize sequential activities that happen one after the other and activities that are interleaved or occur in parallel to detect a richer set of contexts more accurately than prior work. We evaluate TAO on real-world activity datasets (Casas and Extrasensory) and show that our system achieves, on average, 87% and 80% accuracy for context detection, respectively. We deploy and evaluate TAO in a real-world setting with eight participants using our system for three hours each, demonstrating TAO's ability to capture semantically meaningful contexts in the real world. Finally, to showcase the usefulness of contexts, we prototype wellness applications that assess productivity and stress and show that the wellness metrics calculated using contexts provided by TAO are much closer to the ground truth (on average within 1.1%), as compared to the baseline approach (on average within 30%).

     
    more » « less