skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Iron-controlled oxidative sulfur cycling recorded in the distribution and isotopic composition of sulfur species in glacially influenced fjord sediments of west Svalbard
Award ID(s):
1633299
PAR ID:
10072589
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Geology
Volume:
466
Issue:
C
ISSN:
0009-2541
Page Range / eLocation ID:
678 to 695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Elemental sulfur (S80)‐oxidising Sulfolobales (Archaea) dominate high‐temperature acidic hot springs (>80°C, pH <4). However, genomic analyses of S80‐oxidising members of the Sulfolobales reveal a patchy distribution of genes encoding sulfur oxygenase reductase (SOR), an S80disproportionating enzyme attributed to S80oxidation. Here, we report the S80‐dependent growth of two Sulfolobales strains previously isolated from acidic hot springs in Yellowstone National Park, one of which associated with bulk S80during growth and one that did not. The genomes of each strain encoded different sulfur metabolism enzymes, with only one encoding SOR. Dialysis membrane experiments showed that direct contact is not required for S80oxidation in the SOR‐encoding strain. This is attributed to the generation of hydrogen sulfide (H2S) from S80disproportionation that can diffuse out of the cell to solubilise bulk S80to form soluble polysulfides (Sx2−) and/or S80nanoparticles that readily diffuse across dialysis membranes. The Sulfolobales strain lacking SOR required direct contact to oxidise S80, which could be overcome by the addition of H2S. High concentrations of S80inhibited the growth of both strains. These results implicate alternative strategies to acquire and metabolise sulfur in Sulfolobales and have implications for their distribution and ecology in their hot spring habitats. 
    more » « less
  2. Abstract Recycling of oxidized sulfur from subducting slabs to the mantle wedge provides simultaneous explanations for the elevated oxygen fugacity (fO2) in subduction zones, their high hydrothermal and magmatic sulfur outputs, and the enriched sulfur isotopic signatures (i.e., δ34S > 0‰) of these outputs. However, a quantitative understanding of the abundance and speciation of sulfur in slab fluids consistent with high pressure experiments is lacking. Here we analyze published experimental data for anhydrite solubility in H2O‐NaCl solutions to calibrate a high‐pressure aqueous speciation model of sulfur within the framework of the deep earth water model. We characterize aqueous complexes, required to account for the high experimental anhydrite solubilities. We then use this framework to predict the speciation and solubility of sulfur in chemically complex fluids in equilibrium with model subducting mafic and ultramafic lithologies, from 2 to 3 GPa and 400 to 800°C at logfO2from FMQ‐2 to FMQ+4. We show that sulfate complexes of calcium and sodium markedly enhance the stability of sulfate in moderately oxidized fluids in equilibrium with pyrite atfO2conditions of FMQ+1 to +2, causing large sulfur isotope fractionations up to 10‰ in the fluid relative to the slab. Such fluids could impart oxidized, sulfur‐rich and high δ34S signatures to the mantle wedge that are ultimately transferred to arc magmas, without the need to invoke34S‐rich subducted lithologies. 
    more » « less
  3. Abstract Mg‐S batteries hold great promise as a potential alternative to Li‐based technologies. Their further development hinges on solving a few key challenges, including the lower capacity and poorer cycling performance when compared to Li counterparts. At the heart of the issues is the lack of knowledge on polysulfide chemical behaviors in the Mg‐S battery environment. In this Review, a comprehensive overview of the current understanding of polysulfide behaviors in Mg‐S batteries is provided. First, a systematic summary of experimental and computational techniques for polysulfide characterization is provided. Next, conversion pathways for Mg polysulfide species within the battery environment are discussed, highlighting the important role of polysulfide solubility in determining reaction kinetics and overall battery performance. The focus then shifts to the negative effects of polysulfide shuttling on Mg‐S batteries. The authors outline various strategies for achieving an optimal balance between polysulfide solubility and shuttling, including the use of electrolyte additives, polysulfide‐trapping materials, and dual‐functional catalysts. Based on the current understanding, the directions for further advancing knowledge of Mg polysulfide chemistry are identified, emphasizing the integration of experiment with computation as a powerful approach to accelerate the development of Mg‐S battery technology. 
    more » « less
  4. Core-shell structured sulfur composite nanoparticles (NPs) and their various derivatives have been widely inves- tigated as a promising cathode material for Li-S batteries (LSBs) thanks to their unique features in suppressing the lithium polysulfides shuttle effect, accommodating the sulfur electrode volume change, and providing abundant electrochemically active sites. The commonly used infiltration strategy falls short in producing a near ideal core- shell structure. Accordingly, the strategy of encapsulation, in which the prefabricated sulfur or sulfur precursor nanocore is encapsulated by a subsequently formed host shell has attracted broad interest, and this technique has significantly accelerated the LSB development. To advance the state of the art in producing encapsulated sulfur NPs, it becomes necessary to systematically survey the past relevant works and sum up research gaps. This review first takes an excursion to the infiltration strategy to highlight its limitations, followed by surveys on studies of synthesizing sulfur NPs, encapsulating sulfur NPs, and producing encapsulated sulfur NPs from metal sulfides. The strengths and weaknesses of each method, the resulted NPs, their electrochemical properties and the associated LSB performances are particularly emphasized. The rationales to design and the results of applying structural derivatives of the conventional core-shell configuration are then assessed. The encapsulated sulfur NPs applied in aqueous batteries are also discussed. This comprehensive review on sulfur encapsulation is concluded by a summary on further challenges and opportunities as well as our perspectives on possible future research directions, towards fundamental understanding and practical development of encapsulated sulfur NP-based LSB technology. 
    more » « less