skip to main content

Title: Expressive Speech-Driven Lip Movements with Multitask Learning
The orofacial area conveys a range of information, including speech articulation and emotions. These two factors add constraints to the facial movements, creating non-trivial integrations and interplays. To generate more expressive and naturalistic movements for conversational agents (CAs) the relationship between these factors should be carefully modeled. Data-driven models are more appropriate for this task than rule-based systems. This paper provides two deep learning speech-driven structures to integrate speech articulation and emotional cues. The proposed approaches rely on multitask learning (MTL) strategies, where related secondary tasks are jointly solved when synthesizing orofacial movements. In particular, we evaluate emotion recognition and viseme recognition as secondary tasks. The approach creates shared representations that generate behaviors that not only are closer to the original orofacial movements, but also are perceived more natural than the results from single task learning.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE Conference on Automatic Face and Gesture Recognition (FG 2018)
Page Range / eLocation ID:
409 to 415
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The performance of facial expression recognition (FER) systems has improved with recent advances in machine learning. While studies have reported impressive accuracies in detecting emotion from posed expressions in static images, there are still important challenges in developing FER systems for videos, especially in the presence of speech. Speech articulation modulates the orofacial area, changing the facial appearance. These facial movements induced by speech introduce noise, reducing the performance of an FER system. Solving this problem is important if we aim to study more naturalistic environment or applications in the wild. We propose a novel approach to compensate for lexical information that does not require phonetic information during inference. The approach relies on a style extractor model, which creates emotional-to-neutral transformations. The transformed facial representations are spatially contrasted with the original faces, highlighting the emotional information conveyed in the video. The results demonstrate that adding the proposed style extractor model to a dynamic FER system improves the performance by 7% (absolute) compared to a similar model with no style extractor. This novel feature representation also improves the generaliza- tion of the model. 
    more » « less
  2. In this paper, we present MuteIt, an ear-worn system for recognizing unvoiced human commands. MuteIt presents an intuitive alternative to voice-based interactions that can be unreliable in noisy environments, disruptive to those around us, and compromise our privacy. We propose a twin-IMU set up to track the user's jaw motion and cancel motion artifacts caused by head and body movements. MuteIt processes jaw motion during word articulation to break each word signal into its constituent syllables, and further each syllable into phonemes (vowels, visemes, and plosives). Recognizing unvoiced commands by only tracking jaw motion is challenging. As a secondary articulator, jaw motion is not distinctive enough for unvoiced speech recognition. MuteIt combines IMU data with the anatomy of jaw movement as well as principles from linguistics, to model the task of word recognition as an estimation problem. Rather than employing machine learning to train a word classifier, we reconstruct each word as a sequence of phonemes using a bi-directional particle filter, enabling the system to be easily scaled to a large set of words. We validate MuteIt for 20 subjects with diverse speech accents to recognize 100 common command words. MuteIt achieves a mean word recognition accuracy of 94.8% in noise-free conditions. When compared with common voice assistants, MuteIt outperforms them in noisy acoustic environments, achieving higher than 90% recognition accuracy. Even in the presence of motion artifacts, such as head movement, walking, and riding in a moving vehicle, MuteIt achieves mean word recognition accuracy of 91% over all scenarios. 
    more » « less
  3. null (Ed.)
    Articulation, emotion, and personality play strong roles in the orofacial movements. To improve the naturalness and expressiveness of virtual agents(VAs), it is important that we carefully model the complex interplay between these factors. This paper proposes a conditional generative adversarial network, called conditional sequential GAN(CSG), which learns the relationship between emotion, lexical content and lip movements in a principled manner. This model uses a set of spectral and emotional speech features directly extracted from the speech signal as conditioning inputs, generating realistic movements. A key feature of the approach is that it is a speech-driven framework that does not require transcripts. Our experiments show the superiority of this model over three state-of-the-art baselines in terms of objective and subjective evaluations. When the target emotion is known, we propose to create emotionally dependent models by either adapting the base model with the target emotional data (CSG-Emo-Adapted), or adding emotional conditions as the input of the model(CSG-Emo-Aware). Objective evaluations of these models show improvements for the CSG-Emo-Adapted compared with the CSG model, as the trajectory sequences are closer to the original sequences. Subjective evaluations show significantly better results for this model compared with the CSG model when the target emotion is happiness. 
    more » « less
  4. Thefaceconveysablendofverbalandnonverbalinformation playing an important role in daily interaction. While speech articulation mostly affects the orofacial areas, emotional behaviors are externalized across the entire face. Considering the relation between verbal and non-verbal behaviors is important to create naturalistic facial movements for conversational agents (CAs). Furthermore, facial muscles connect areas across the face, creating principled relationships and dependencies between the movements that have to be taken into account. These relationships are ignored when facial movements across the face are sep- arately generated. This paper proposes to create speech-driven models that jointly capture the relationship not only between speech and facial movements, but also across facial movements. The input to the models are features extracted from speech that convey the verbal and emotional states of the speakers. We build our models with bidirectional long-short term memory (BLSTM) units which are shown to be very successful in modeling dependencies for sequential data. The objective and subjective evaluations of the results demonstrate the benefits of joint modeling of facial regions using this framework. 
    more » « less
  5. Learning to process speech in a foreign language involves learning new representations for mapping the auditory signal to linguistic structure. Behavioral experiments suggest that even listeners that are highly proficient in a non-native language experience interference from representations of their native language. However, much of the evidence for such interference comes from tasks that may inadvertently increase the salience of native language competitors. Here we tested for neural evidence of proficiency and native language interference in a naturalistic story listening task. We studied electroencephalography responses of 39 native speakers of Dutch (14 male) to an English short story, spoken by a native speaker of either American English or Dutch. We modeled brain responses with multivariate temporal response functions, using acoustic and language models. We found evidence for activation of Dutch language statistics when listening to English, but only when it was spoken with a Dutch accent. This suggests that a naturalistic, monolingual setting decreases the interference from native language representations, whereas an accent in the listener's own native language may increase native language interference, by increasing the salience of the native language and activating native language phonetic and lexical representations. Brain responses suggest that such interference stems from words from the native language competing with the foreign language in a single word recognition system, rather than being activated in a parallel lexicon. We further found that secondary acoustic representations of speech (after 200 ms latency) decreased with increasing proficiency. This may reflect improved acoustic–phonetic models in more proficient listeners.

    Significance StatementBehavioral experiments suggest that native language knowledge interferes with foreign language listening, but such effects may be sensitive to task manipulations, as tasks that increase metalinguistic awareness may also increase native language interference. This highlights the need for studying non-native speech processing using naturalistic tasks. We measured neural responses unobtrusively while participants listened for comprehension and characterized the influence of proficiency at multiple levels of representation. We found that salience of the native language, as manipulated through speaker accent, affected activation of native language representations: significant evidence for activation of native language (Dutch) categories was only obtained when the speaker had a Dutch accent, whereas no significant interference was found to a speaker with a native (American) accent.

    more » « less