Curricula enhanced through the use of digital games can benefit students in their interest and learning of Science, Technology, Engineering, and Mathematics (STEM) concepts. Elementary teachers’ likelihood to embrace and use game-enhanced instructional approaches with integrity in mathematics has not been extensively studied. In this study, a sequential mixed methods design was employed to investigate the feasibility of a game-enhanced supplemental fraction curriculum in elementary classrooms, including how teachers implemented the curriculum, their perspectives and experiences as they used it, and their students’ resulting fraction learning and STEM interest. Teachers implemented the supplemental curriculum with varying adherence but had common experiences throughout their implementation. Teachers expressed experiences related to (1) time, (2) curriculum being too different, and (3) too difficult for students. Their strategies to handle those phenomena varied. Teachers that demonstrated higher adherence to the game-enhanced supplemental fraction curriculum had students that displayed higher STEM interest and fraction learning. While this study helps to better understand elementary teachers’ experiences with game-enhanced mathematics curricula, implications for further research and program development are also discussed.
Creativity, Customization, and Ownership: Game Design in Bootstrap: Algebra
Game programming projects are concrete and motivational for students, especially when used to teach more abstract concepts such as algebra. These projects must have open-ended elements to allow for creativity, but too much freedom makes it hard to reach specific learning outcomes. How many degrees of freedom do students need to make a game feel like one they genuinely designed? What kinds of personalization do they undertake of their games? And how do these factors correlate with their prior game-playing experience or with their identified gender? This paper studies these questions in the concrete setting of the Bootstrap:Algebra curriculum. In this curriculum, students are only given four parameters they can customize and only a few minutes in which to do so. Our study shows that despite this very limited personalization, students still feel a strong sense of ownership, originality, and pride in their creations. We also find that females find videogame creation just as satisfying as males, which contradicts some prior research but may also reflect the nature of games created in this curriculum and the opportunities it offers for self-expression.
more »
« less
- Award ID(s):
- 1535276
- PAR ID:
- 10072912
- Date Published:
- Journal Name:
- Proceedings of the 49th ACM Technical Symposium on Computer Science Education
- Page Range / eLocation ID:
- 161 to 166
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The perceptions and experiences of freshman and sophomore engineering students when playing an online serious engineering game are explored. The engineering game of interest was designed to improve engineering intuition and knowledge of engineering mechanics in a statics course. Use of serious educational engineering games has increased in engineering education to help students increase technical competencies in engineering disciplines. However, few have investigated how these engineering games are experienced by the students; how games influence students’ perceptions of learning, or how these factors may lead to inequitable perspectives among diverse populations of students. A mixed method sequential analysis informed by the Technology Acceptance Model was performed to ascertain the experiences of one hundred and thirty-two students. Women of colour indicated that going to the next challenge level in the game made them feel as though they had increased their engineering knowledge to a higher degree than their male counterparts, this group also indicated higher levels of frustration than their male and Caucasian woman counterparts. Additional studies are need to more definitive conclusions.more » « less
-
Our researchers seek to support students in building block-based programming projects that are motivating and engaging as well as valuable practice in learning to code. A difficult part of the programming process is planning. In this research, we explore how novice programmers used a custom-built planning tool, PlanIT, contrasted against how they used storyboarding when planning games. In a three-part study, we engaged novices in planning and programming three games: a maze game, a break-out game, and a mashup of the two. In a set of five case studies, we show how five pairs of students approached the planning and programming of these three games, illustrating that students felt more creative when storyboarding rather than using PlanIT. We end with a discussion on the implications of this work for designing supports for novices to plan open-ended projects.more » « less
-
This paper shares the design principles of one Advanced Placement Computer Science Principles (AP CSP) course, Beauty and Joy of Computing (BJC), both for schools considering curriculum, and for developers in this still-new field. BJC students not only learn about CS, but do some and analyze its social implications; we feel that the job of enticing students into the field isn’t complete until students find programming, itself, something they enjoy and know they can do, and its key ideas accessible. Students must feel invited to use their own creativity and logic, and enjoy the power of their logic and the beauty and elegance of the code by which they express it. All kids need genuine challenge and sensible supports so all can have the joy of making—seeing themselves as creators, not just consumers, and seeing that it is their own intellect, not just our instructions, that is the source of that making. Framework standards are woven into a consistent social and intellectual storyline to give the curriculum integrity. Principles guide even our choice of programming language. Learners should focus on the logic and structure of their thinking, not on misplaced semicolons; attention to such syntactic detail is antithetical to broadening participation. We feature recursion and higher order functions because they beautifully exemplify abstraction, a key idea in CS and the CSP framework. BJC also places significant emphasis on the social implications of computing, balancing fundamental optimism about computing technology with a critical view of specific uses of technology.more » « less
-
This Research Full paper focuses on perceptions and experiences of freshman and sophomore engineering students when playing an online serious engineering game that was designed to improve engineering intuition and knowledge of statics. Use of serious educational engineering games has increased in engineering education to help students increase technical competencies in engineering disciplines. However, few have investigated how these engineering games are experienced by the students; how games influence students' perceptions of learning, or how these factors may lead to inequitable perspectives among diverse populations of students. Purpose/Hypothesis: The purpose of this study was to explore the perceptions, appeal, and opinions about the efficacy of educational online games among a diverse population of students in an engineering mechanics statics course. It was hypothesized that compared to majority groups (e.g., men, White), women of color who are engineering students would experience less connections to the online educational game in terms of ease of use and level of frustration while playing. It is believed that these discordant views may negatively influence the game's appeal and efficacy towards learning engineering in this population of students. Design/Method: The Technology Acceptance Model (TAM) is expanded in this study, where the perspectives of women of colour (Latinx, Asian and African American) engineering students are explored. The research approach employed in this study is a mixed-method sequential exploratory design, where students first played the online engineering educational game, then completed a questionnaire, followed by participation in a focus group. Responses were initially analyzed through open and magnitude coding approaches to understand whether students thought these educational games reflected their personal culture. Results: Preliminary results indicate that though the majority of the students were receptive to using the online engineering software for their engineering education, merely a few intimated that they would use this software for engineering exam or technical job interview preparation. A level-one categorical analysis identified a few themes that comprised unintended preservation of inequality in favor of students who enjoyed contest-based education and game technology. Competition-based valuation of presumed mastery of course content fostered anxiety and intimidation among students, which caused some to "game the game" instead of studying the material, to meet grade goals. Some students indicated that they spent more time (than necessary) to learn the goals of the game than engineering content itself, suggesting a need to better integrate course material while minimizing cognitive effort in learning to navigate the game. Conclusions: Preliminary results indicate that engineering software's design and the way is coupled with course grading and assessment of learning outcomes, affect student perceptions of the technology's acceptance, usefulness, and ease of use as a "learning tool." Students were found to have different expectations of serious games juxtaposed software/apps designed for entertainment. Conclusions also indicate that acceptance of inquiry-based educational games in a classroom among diverse populations of students should clearly articulate and connect the game goals/objectives with class curriculum content. Findings also indicate that a multifaceted schema of tools, such as feedback on game challenges, and explanations for predictions of the game should be included in game/app designs.more » « less