skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integration of Art Pedagogy in Engineering Graduate Education
The integration of STEM with the Arts, commonly referred to as STEAM, recognizes the need for human skill, creativity, and imagination in technological innovations and solutions of real-world technical problems. The STEAM paradigm changes the dominant “chalk and talk” lecture and “closed-ended” problem-solving orientation of traditional engineering pedagogy to a hands-on, studio-based, and open-ended creative learning approach, typical in art education. A growing body of literature has provided evidence of the favorable impact of situating STEAM in K-16 education. The long-term objective of this work is to promote creativity in engineering students by integrating learning methods and environments from the Arts into graduate STEM education. To this end, an integrating engineering, technology and art (ETA) educational model is developed and is currently being tested. This ETA educational model systematically merges technical instruction with studio-based pedagogy. The ETA model consists of three courses, which were piloted in the year 2017. In each course, engineering and art instructors and students collaborated for 15 weeks on design projects. These projects ranged from drones to architectural installations.  more » « less
Award ID(s):
1633426
PAR ID:
10073095
Author(s) / Creator(s):
Date Published:
Journal Name:
ASEE Illinois-Indiana Section Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract STEAM education is an educational approach of interdisciplinary teaching of science, technology, engineering, art, and mathematics. STEAM education, however, is often viewed as only including art elements into STEM teaching. Without true integration of the disciplines in STEAM curricula, students rarely are exposed to the connection among disciplines, and self-identify as solely scientists, artists, or technophiles. STEAM curricula also infrequently integrate design, which promotes creativity and innovation. Effective STEAM curriculum and practices are needed to prepare students to face 21st century challenges and work demands. We designed a high school STEAM educational module that integrated plant science, design, and emergent technologies through the creation of 3D models of plants and augmented and virtual reality (AVR) experiences and investigated its impact on students’ understanding of the intersection of art and design with science, learning and skills gains, and interests in STEAM subjects and careers. The module used a project-based learning approach that relied on student teamwork and facilitation by educators. In this 3D plant modeling module, students: (1) investigated plants under research at a plant science research center, (2) designed and created 3D models of those plants, (3) learned about the application of 3D modeling in AVR platforms, and (4) disseminated project results. We used qualitative and quantitative research methods both before and after the implementation of the model to assess the impact of the 3D modeling module. Student responses revealed that approximately half of the students had a good understanding of the intersection of art and design with science prior to the implementation of the module, while the other half gained this understanding after completing their projects. Students saw art and design playing a role in science mainly by facilitating communication and further understanding and fostering new ideas. They also reported that science influenced art and design through the artistic creation process. The most common learning gains were in plant science and 3D modeling, with 35% and 20% of the students reporting these themes only after completing their projects, respectively. The skill gains most cited were research, teamwork, and communication skills. Over 25% of the students reported these skill gains only after the completion of their projects. Paired comparisons of survey responses indicated a significant increase in students’ interest in science, mathematics, and design subjects after they completed their projects. At the end of the module, 40% of the students were more interested in STEAM careers. Another 13% of the students indicated they already had an interest in STEAM careers before beginning the module. Our findings indicate that our STEAM module effectively integrated science, art, design, and technology, enhancing student literacy in these fields, and providing students with essential 21st century skills. The module led to interdisciplinary learning and development of interest in STEAM subjects and careers. The combination of pedagogical strategies used in our module for active, collaborative, authentic, and meaningful learning exemplifies an effective STEAM curriculum with valuable instructional tools for educators, inspiring new ways of teaching and learning, contributing to the practice and applications in STEAM education. 
    more » « less
  2. Recent STEAM programs have made accomplishments in recruiting K-12 girl students to participate in STEAM activities. Educational researchers have called for studies of how STEM programs engage girls. However, little research has embedded STEM education with girl education such as their emotional needs, identity, and self-expression. This study examined how crochet that was embedded in a STEM summer camp impacted their sense of belonging, creativity, well-being, and STEAM learning. For this qualitative study, surveys were conducted with 37 student participants and Discord was used as part of the data sources. Findings indicated that crocheting enhanced students’ sense of belonging, creativity, well-being, as well as STEM learning. This study contributes to the STEM learning program design for girls in secondary schools with two closely related theories: constructivist learning environment theory and sense of belonging theory. This study added new knowledge to the research of crochet in girl education and STEM program design. 
    more » « less
  3. STEM education is often disconnected from innovation and design, where students self-identify as solely scientists, artists, or technophiles, but rarely see the connection between the disciplines. The inclusion of arts (A) in STEM education (STEAM) offers an educational approach where students see how subjects are integrated through learning experiences that apply to everyday, developing personal connections and becoming motivated learners who understand how skills from each subject are needed for future careers. This project addresses both the disconnect between science, design, and technology and how high school students can benefit from innovative learning experiences in plant science that integrate these disciplines while gaining invaluable skills for future STEM careers. We used the Science-Art-Design-Technology (SADT) pedagogical approach, characterized by its project-based learning that relies on student teamwork and facilitation by educators. This approach was applied through a STEAM educational 3D plant module where teams: 1) investigated plants under research at a plant science research center, 2) designed and created 3D models of those plants, 3) experienced the application of 3D modeling in augmented and virtual reality platforms, and 4) disseminated project results. We used a mixed-method approach using qualitative and quantitative research methods to assess the impact of the 3D modeling module on students’ understanding of the intersection of art and design with science, learning and skills gains, and interests in STEAM subjects and careers. A total of 160 students from eight educational institutions (schools and informal programs) implemented the module. Student reflection questions revealed that students see art and design playing a role in science mainly by facilitating communication and further understanding and fostering new ideas. They also see science influencing art and design through the artistic creation process. The students acknowledged learning STEAM content and applications associated with plant science, 3D modeling, and augmented and virtual reality. They also acknowledged gaining research skills and soft skills such as collaboration and communication. Students also increased their interest in STEAM subjects and careers, particularly associated with plant science. The SADT approach, exemplified by the 3D plant module, effectively integrates science, art, design, and technology, enhancing student literacy in these fields, and providing students with essential 21st century competencies. The module's flexibility and experiential learning opportunities benefit students and educators, promoting interdisciplinary learning and interest in STEAM subjects and careers. This innovative approach is a valuable tool for educators, inspiring new ways of teaching and learning in STEAM education. 
    more » « less
  4. Science, technology, engineering and mathematics (STEM) has been the foundation for many years for teaching critical thinking and problem-solving skills. The U.S. Department of Education website includes information about the importance of STEM in an increasingly complex world and the importance of all youth to have problem solving skills. Many researchers and practitioners propose moving from using the acronym STEM to science, technology, engineering, arts, and mathematics (STEAM). The difference in STEM and STEAM is the inclusion of arts of any kind, aligning artistic creativity with STEM learning. Zimmerman and Sprung concluded that motivation and self-confidence in computing for females is increased when they can learn CS in the context of a content area, they are already comfortable with [1]. Recognizing this cross-disciplinary connection approach, Mississippi State University researchers in 2014 integrated a physical art component module that enabled girls to design robots using crafting material, with positive results. In 2019, the team piloted a 4-day camp that integrated learning dance moves with algorithmic thinking and computer programming. This paper will discuss the results of that camp that was offered in a very small rural town in a southern state in the United States, and how the arts component influenced the learners’ perception of computing. 
    more » « less
  5. The research will create an academic program (curricular and co-curricular components) that integrates art concepts into an undergraduate engineering program. The goals of the program are increased student innovation, creativity, collegiality, and entrepreneurship, all while broadening the undergraduate talent pool. The programmatic elements are focused on integration of arts in STEM (i.e. STEAM) to achieve the stated goals. The centerpiece is the infusion of STEAM content into laboratories and courses distributed throughout a model engineering program in Metallurgical Engineering. Curricular modifications will be facilitated through involvement of a Resident Artist who will be embedded within the academic program. The research is evidence-based and builds on prior NSF Course Curricular and Laboratory Improvement (CCLI) research that involved highly successful curricular and co-curricular programming associated with integration of blacksmithing into an undergraduate Metallurgical Engineering degree program. A rigorous external assessment of the research will be conducted and includes the use of a variety of assessment tools including Herrmann Brain Dominance Inventory, Small Group Instructional Diagnosis (SGID), and student focus groups. Preliminary results from the SGID and student focus group surveys report positive results with the modified curricula that has been integrated into the initial course, Introduction to Metallurgical Engineering. Student surveys were performed with a primary focus on student advancement in areas of creativity, innovation, and technical knowledge. The self-efficacy studies illustrate a general increase in the students’ perception of their creative skills and technical knowledge. 
    more » « less