skip to main content

Title: SensePresence: Infrastructure-Less Occupancy Detection for Opportunistic Sensing Applications
Predicting the occupancy related information in an environment has been investigated to satisfy the myriad requirements of various evolving pervasive, ubiquitous, opportunistic and participatory sensing applications. Infrastructure and ambient sensors based techniques have been leveraged largely to determine the occupancy of an environment incurring a significant deployment and retrofitting costs. In this paper, we advocate an infrastructure-less zero-configuration multimodal smartphone sensor-based techniques to detect fine-grained occupancy information. We propose to exploit opportunistically smartphones' acoustic sensors in presence of human conversation and motion sensors in absence of any conversational data. We develop a novel speaker estimation algorithm based on unsupervised clustering of overlapped and non-overlapped conversational data to determine the number of occupants in a crowded environment. We also design a hybrid approach combining acoustic sensing opportunistically with locomotive model to further improve the occupancy detection accuracy. We evaluate our algorithms in different contexts, conversational, silence and mixed in presence of 10 domestic users. Our experimental results on real-life data traces collected from 10 occupants in natural setting show that using this hybrid approach we can achieve approximately 0.76 error count distance for occupancy detection accuracy on average.
; ;
Award ID(s):
Publication Date:
Journal Name:
2015 16th IEEE International Conference on Mobile Data Management
Page Range or eLocation-ID:
56 to 61
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate estimation of localized occupancy related information in real time enables a broad range of intelligent smart environment applications. A large number of studies using heterogeneous sensor arrays reflect the myriad requirements of various emerging pervasive, ubiquitous and participatory sensing applications. In this paper, we introduce a zero-configuration and infrastructure-less smartphone based location specific occupancy estimation model. We opportunistically exploit smartphone’s acoustic sensors in a conversing environment and motion sensors in absence of any conversational data. We demonstrate a novel speaker estimation algorithm based on unsupervised clustering of overlapped and non-overlapped conversational data and a change point detection algorithm for locomotive motion of the users to infer the occupancy. We augment our occupancy detection model with a fingerprinting based methodology using smartphone’s magnetometer sensor to accurately assimilate location information of any gathering. We postulate a novel crowdsourcing-based approach to annotate the semantic location of the occupancy. We evaluate our algorithms in different contexts; conversational, silence and mixed in presence of 10 domestic users. Our experimental results on real-life data traces in natural settings show that using this hybrid approach, we can achieve approximately 0.76 error count distance for occupancy detection accuracy on average.
  2. Occupancy detection helps enable various emerging smart environment applications ranging from opportunistic HVAC (heating, ventilation, and air-conditioning) control, effective meeting management, healthy social gathering, and public event planning and organization. Ubiquitous availability of smartphones and wearable sensors with the users for almost 24 hours helps revitalize a multitude of novel applications. The inbuilt microphone sensor in smartphones plays as an inevitable enabler to help detect the number of people conversing with each other in an event or gathering. A large number of other sensors such as accelerometer and gyroscope help count the number of people based on other signals such as locomotive motion. In this work, we propose multimodal data fusion and deep learning approach relying on the smartphone’s microphone and accelerometer sensors to estimate occupancy. We first demonstrate a novel speaker estimation algorithm for people counting and extend the proposed model using deep nets for handling large-scale fluid scenarios with unlabeled acoustic signals. We augment our occupancy detection model with a magnetometer-dependent fingerprinting-based localization scheme to assimilate the volume of location-specific gathering. We also propose crowdsourcing techniques to annotate the semantic location of the occupant. We evaluate our approach in different contexts: conversational, silence, and mixed scenarios in themore »presence of 10 people. Our experimental results on real-life data traces in natural settings show that our cross-modal approach can achieve approximately 0.53 error count distance for occupancy detection accuracy on average.« less
  3. In this paper, we present a multiple concurrent occupant identification approach through footstep-induced floor vibration sensing. Identification of human occupants is useful in a variety of indoor smart structure scenarios, with applications in building security, space allocation, and healthcare. Existing approaches leverage sensing modalities such as vision, acoustic, RF, and wearables, but are limited due to deployment constraints such as line-of-sight requirements, sensitivity to noise, dense sensor deployment, and requiring each walker to wear/carry a device. To overcome these restrictions, we use footstep-induced structural vibration sensing. Footstep-induced signals contain information about the occupants' unique gait characteristics, and propagate through the structural medium, which enables sparse and passive identification of indoor occupants. The primary research challenge is that multiple-person footstep-induced vibration responses are a mixture of structurally-codependent overlapping individual responses with unknown timing, spectral content, and mixing ratios. As such, it is difficult to determine which part of the signal corresponds to each occupant. We overcome this challenge through a recursive sparse representation approach based on cosine distance that identifies each occupant in a footstep event in the order that their signals are generated, reconstructs their portion of the signal, and removes it from the mixed response. By leveraging sparse representation,more »our approach can simultaneously identify and separate mixed/overlapping responses, and the use of the cosine distance error function reduces the influence of structural codependency on the multiple walkers' signals. In this way, we isolate and identify each of the multiple occupants' footstep responses. We evaluate our approach by conducting real-world walking experiments with three concurrent walkers and achieve an average F1 score for identifying all persons of 0.89 (1.3x baseline improvement), and with a 10-person "hybrid" dataset (simulated combination of single-walker real-world data), we identify 2, 3, and 4 concurrent walkers with a trace-level accuracy of 100%, 93%, and 73%, respectively, and observe as much as a 2.9x error reduction over a naive baseline approach.« less
  4. Database-driven Dynamic Spectrum Sharing (DSS) is the de-facto technical paradigm adopted by Federal Communications Commission for increasing spectrum efficiency, which allows licensed spectrum to be opportunistically used by secondary users. In database-driven DSS, a geo-location database administrator (DBA) maintains spectrum availability information over its service region in the form of a Radio Environment Map (REM), where the received signal strength from the primary user at every location is either directly measured via spectrum sensing or estimated via statistical spatial interpolation. Crowdsourcing-based spectrum sensing is a promising approach for periodically collecting spectrum measurements over a large geographic area but is unfortunately vulnerable to false spectrum measurements. Despite a large body of prior work on secure cooperative spectrum sensing, how to construct an accurate REM in the presence of false measurements remains an open challenge. In this paper, we introduce ST-REM, a novel spatiotemporal approach for securely constructing an REM in the presence of false spectrum measurements. Inspired by the self-label techniques developed for semi-supervised learning, ST-REM iteratively constructs an REM from a small number of spectrum measurements from trusted anchor sensors and many more measurements from mobile users. During each iteration, the DBA evaluates the trustworthiness of each measurement by jointlymore »considering its spatial fitness with other trusted measurements and the mobile user's long-term behavior. By gradually incorporating the most trustworthy spectrum measurements, the DBA is able to construct a REM with high accuracy. Extensive simulation studies using a real spectrum measurement dataset confirm the efficacy and efficiency of ST-REM.« less
  5. About 40% of the energy produced globally is consumed within buildings, primarily for providing occupants with comfortable work and living spaces. However, despite the significant impacts of such energy consumption on the environment, the lack of thermal comfort among occupants is a common problem that can lead to health complications and reduced productivity. To address this problem, it is particularly important to understand occupants’ thermal comfort in real-time to dynamically control the environment. This study investigates an infrared thermal camera network to extract skin temperature features and predict occupants’ thermal preferences at flexible distances and angles. This study distinguishes from existing methods in two ways: (1) the proposed method is a non-intrusive data collection approach which does not require human participation or personal devices; (2) it uses low-cost thermal cameras and RGB-D sensors which can be rapidly reconfigured to adapt to various settings and has little or no hardware infrastructure dependency. The proposed camera network is verified using the facial skin temperature collected from 16 subjects in a multi-occupancy experiment. The results show that all 16 subjects observed a statistically higher skin temperature as the room temperature increases. The variations in skin temperature also correspond to the distinct comfort statesmore »reported by the subjects. The post-experiment evaluation suggests that the networked thermal cameras have a minimal interruption of building occupants. The proposed approach demonstrates the potential to transition the human physiological data collection from an intrusive and wearable device-based approach to a truly non-intrusive and scalable approach.« less