skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Facile synthesis of electrocatalytically active NbS 2 nanoflakes for an enhanced hydrogen evolution reaction (HER)
We report a simple ambient pressure annealing technique for the synthesis of ultrathin niobium disulfide (NbS 2 ) nanoflakes. The structure, morphology and composition of the as-synthesized NbS 2 flakes are well characterized using various microscopic and spectroscopic techniques. The synthesized two-dimensional layered NbS 2 is in stoichiometric proportion, and has a single crystal 3R-NbS 2 polymorph structure with semiconducting behavior and has abundant catalytic defect sites. In this paper, the hydrogen evolution reaction (HER) activity of the NbS 2 nanoflakes/rGO composite having dense exposed basal planes with improved conductivity is explored, and it is found to be a good HER catalyst in terms of low onset potential, low Tafel slope and high exchange current density.  more » « less
Award ID(s):
1748363
PAR ID:
10073286
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sustainable Energy & Fuels
Volume:
2
Issue:
1
ISSN:
2398-4902
Page Range / eLocation ID:
96 to 102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A free-standing film composed of bilayered vanadium oxide nanoflakes is for the first time synthesized using a new low-energy process. The precursor powder, δ-Li x V 2 O 5 · n H 2 O, was prepared using a simple sol–gel based chemical preintercalation synthesis procedure. δ-Li x V 2 O 5 · n H 2 O was dispersed and probe sonicated in N -methyl pyrrolidone to exfoliate the bilayers followed by vacuum filtration resulting in the formation of a free-standing film with obsidian color. X-ray diffraction showed lamellar ordering of a single-phase material with a decreased interlayer distance compared to that of the precursor powder. Scanning electron microscopy images demonstrated stacking of the individual nanoflakes. This morphology was further confirmed with scanning transmission electron microscopy that showed highly malleable nanoflakes consisting of ∼10–100 vanadium oxide bilayers. One of the most important consequences of this morphological rearrangement is that the electronic conductivity of the free-standing film, measured by the four-probe method, increased by an order of magnitude compared to conductivity of the pressed pellet made of precursor powder. X-ray photoelectron spectroscopy measurements showed the coexistence of both V 5+ and V 4+ oxidation states in the exfoliated sample, possibly contributing to the change in electronic conductivity. The developed approach provides the ability to maintain the phase purity and crystallographic order during the exfoliation process, coupled with the formation of a free-standing film of enhanced conductivity. The produced bilayered vanadium oxide nanoflakes can be used as the building blocks for the synthesis of versatile two-dimensional heterostructures to create innovative electrodes for electrochemical energy storage applications. 
    more » « less
  2. Abstract Significant optical absorption in the blue–green spectral range, high intralayer carrier mobility, and band alignment suitable for water splitting suggest tin disulfide (SnS2) as a candidate material for photo‐electrochemical applications. In this work, vertically aligned SnS2nanoflakes are synthesized directly on transparent conductive substrates using a scalable close space sublimation (CSS) method. Detailed characterization by time‐resolved terahertz and time‐resolved photoluminescence spectroscopies reveals a high intrinsic carrier mobility of 330 cm2V−1s−1and photoexcited carrier lifetimes of 1.3 ns in these nanoflakes, resulting in a long vertical diffusion length of ≈1 µm. The highest photo‐electrochemical performance is achieved by growing SnS2nanoflakes with heights that are between this diffusion length and the optical absorption depth of ≈2 µm, which balances the competing requirements of charge transport and light absorption. Moreover, the unique stepped morphology of these CSS‐grown nanoflakes improves photocurrent by exposing multiple edge sites in every nanoflake. The optimized vertical SnS2nanoflake photoanodes produce record photocurrents of 4.5 mA cm−2for oxidation of a sulfite hole scavenger and 2.6 mA cm−2for water oxidation without any hole scavenger, both at 1.23 VRHEin neutral electrolyte under simulated AM1.5G sunlight, and stable photocurrents for iodide oxidation in acidic electrolyte. 
    more » « less
  3. Abstract Data‐intensive discovery of water‐splitting catalysts can accelerate the development of sustainable energy technologies, such as the photocatalytic and/or electrocatalytic production of renewable hydrogen fuel. Through computational screening, 13 materials were recently predicted as potential water‐splitting photocatalysts: Cu3NbS4, CuYS2, SrCu2O2, CuGaO2, Na3BiO4,Sr2PbO4, LaCuOS, LaCuOSe, Na2TeO4, La4O4Se3, Cu2WS4, BaCu2O2, and CuAlO2. Herein, these materials are synthesized, their bandgaps and band alignments are experimentally determined, and their photoelectrocatalytic hydrogen evolution properties are assessed. Using cyclic voltammetry and chopped illumination experiments, 9 of the 13 materials are experimentally found to have bandgaps and band alignments that straddle the potentials required for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), as computationally predicted. During photocatalytic testing, 12 of the materials yield a measurable photocurrent. However, only three are found to be active for the HER, with Cu3NbS4, CuYS2, and Cu2WS4producing H2in amounts comparable to bare TiO2; a benchmark photocatalyst. This study provides experimental validation of computational bandgap and band alignment predictions while also successfully identifying active photocatalysts. 
    more » « less
  4. The viability of the electrolysis of water currently relies on expensive catalysts such as Pt that are far too impractical for industrial-scale use. Thus, there is considerable interest in developing low-cost, earth-abundant nanomaterials and their alloys as a potential alternative to existing standard catalysts. To address this issue, a synergistic approach involving theory and experiment was carried out. The former, based on density functional theory, was conducted to guide the experiment in selecting the ideal dopant and optimal concentration by focusing on 3d, 4d, and 5d elements as dopants on Ni (001) surface. Subsequently, a series of Ni1−xCrx(x= 0.01–0.09) alloy nanocrystals (NCs) with size ranging from 8.3 ± 1.6–18.2 ± 3.2 nm were colloidally synthesized to experimentally investigate the hydrogen evolution reaction (HER) activity. A compositional dependent trend for electrocatalytic activity was observed from both approaches with Ni0.92Cr0.08NCs showed the lowest ΔGHvalue and the lowest overpotential (η−10) at −10 mA cm−2current density (j), suggesting the highest HER activity among all compositions studied. Among alloy NCs, the highest performing Ni0.92Cr0.08composition displayed a mixed Volmer–Heyrovsky HER mechanism, the lowest Tafel slope, and improved stability in alkaline solutions. This study provides critical insights into enhancing the performance of earth-abundant metals through doping-induced electronic structure variation, paving the way for the design of high-efficiency catalysts for water electrolysis. 
    more » « less
  5. Nature-based solutions (NbS) have emerged as a key strategy for sustainably addressing multiple urban challenges, with rapidly increasing knowledge production requiring synthesis to better understand whether and how NbS work in different social, ecological, economic, or governance contexts. Insights in this Perspective are drawn from a thematic review of 61 NbS review articles supported by an expert assessment of NbS knowledge in seven global regions to examine key challenges, fill gaps in Global South assessment, and provide insights for scaling up NbS for impact in cities. Eight NbS challenges emerged from our review of NbS reviews including conceptual, thematic, geographic, ecological, inclusivity, health, governance, and systems challenges. An additional expert assessment reviewing literature and cases in seven global regions further revealed the following: 1) Local context-based ecological knowledge is essential for NbS success; 2) Improved technical knowledge is required for planning and designing NbS; 3) NbS need to be included in all levels of planning and governance; 4) Putting justice and equity at the center of urban NbS approaches is critical, and 5) Inclusive and participatory governance processes will be key to long-term success of NbS. We synthesized findings from the NbS review results and regional expert assessments to offer four critical pathways for scaling up NbS: 1) foster new NbS research, technological innovation, and learning, 2) build a global NbS alliance for sharing knowledge, 3) ensure a systems approach to NbS planning and implementation, and 4) increase financing and political will for diverse NbS implementation. 
    more » « less