skip to main content

Title: Seasonal similarity in rates of protistan herbivory in fjords along the Western Antarctic Peninsula: Antarctic seasonal protistan herbivory
Author(s) / Creator(s):
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Page Range / eLocation ID:
p. 2858-2876
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Herbivory and nutrient enrichment are drivers of benthic dynamics of coral reef macroalgae; however, their impact may vary seasonally. In this study we evaluated the effects of herbivore pressure, nutrient availability and potential propagule supply on seasonal recruitment and succession of macroalgal communities on a Florida coral reef. Recruitment tiles, replaced every three months, and succession tiles, kept in the field for nine months, were established in an ongoing factorial nutrient enrichment-herbivore exclusion experiment. The ongoing experiment had already created very different algal communities across the different herbivory and nutrient treatments. We tracked algal recruitment, species richness, and species abundance through time. Our results show seasonal variation in the effect of herbivory and nutrient availability on recruitment of coral reef macroalgae. In the spring, when there was higher macroalgal species richness and abundance of recruits, herbivory appeared to have more control on macroalgal community structure than did nutrients. In contrast, there was no effect of either herbivory or nutrient enrichment on macroalgal communities on recruitment tiles in cooler seasons. The abundance of recruits on tiles was positively correlated with the abundance of algal in the ongoing, established experiment, suggesting that propagule abundance is likely a strong influence on algal recruitment and early succession. Results of the present study suggest that abundant herbivorous fishes control recruitment and succession of macroalgae, particularly in the warm season when macroalgal growth is higher. However, herbivory appears less impactful on algal recruitment and community dynamics in cooler seasons. Ultimately, our data suggest that the timing of coral mortality (e.g., summer vs. winter mortality) and freeing of benthic space may strongly influence the dynamics of algae that colonize open space.

    more » « less
  2. We assess Antarctic sea ice climatology and variability in version 2 of the Community Earth System Model (CESM2), and compare it to that in the older CESM1 and (where appropriate) real-world observations. In CESM2, Antarctic sea ice is thinner and less extensive than in CESM1, though sea ice area is still approximately 1 million km2 greater in CESM2 than in present-day observations. Though there is less Antarctic sea ice in CESM2, the annual cycle of ice growth and melt is more vigorous in CESM2 than in CESM1. A new mushy-layer thermodynamics formulation implemented in the latest version of the Community Ice Code (CICE) in CESM2 accounts for both greater frazil ice forma- tion in coastal polynyas and more snow-to-ice conversion near the edge of the ice pack in the new model. Greater winter ice divergence in CESM2 (relative to CESM1) is due to stronger stationary wave activity and greater wind stress curl over the ice pack. Greater wind stress curl, in turn, drives more warm water upwelling under the ice pack, thinning it and decreasing its extent. Overall, differences between Antarctic sea ice in CESM2 and CESM1 arise due to both differences in their sea ice thermodynamics formulations, and differences in their coupled atmosphere-ocean states. 
    more » « less
  3. null (Ed.)
    Abstract Compared to the Arctic, seasonal predictions of Antarctic sea ice have received relatively little attention. In this work, we utilize three coupled dynamical prediction systems developed at the Geophysical Fluid Dynamics Laboratory to assess the seasonal prediction skill and predictability of Antarctic sea ice. These systems, based on the FLOR, SPEAR_LO, and SPEAR_MED dynamical models, differ in their coupled model components, initialization techniques, atmospheric resolution, and model biases. Using suites of retrospective initialized seasonal predictions spanning 1992–2018, we investigate the role of these factors in determining Antarctic sea ice prediction skill and examine the mechanisms of regional sea ice predictability. We find that each system is capable of skillfully predicting regional Antarctic sea ice extent (SIE) with skill that exceeds a persistence forecast. Winter SIE is skillfully predicted 11 months in advance in the Weddell, Amundsen and Bellingshausen, Indian, and West Pacific sectors, whereas winter skill is notably lower in the Ross sector. Zonally advected upper ocean heat content anomalies are found to provide the crucial source of prediction skill for the winter sea ice edge position. The recently-developed SPEAR systems are more skillful than FLOR for summer sea ice predictions, owing to improvements in sea ice concentration and sea ice thickness initialization. Summer Weddell SIE is skillfully predicted up to 9 months in advance in SPEAR_MED, due to the persistence and drift of initialized sea ice thickness anomalies from the previous winter. Overall, these results suggest a promising potential for providing operational Antarctic sea ice predictions on seasonal timescales. 
    more » « less