skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Consistent run selection for independent component analysis: Application to fMRI analysis
Independent component analysis (ICA) has found wide application in a variety of areas, and analysis of functional magnetic resonance imaging (fMRI) data has been a particularly fruitful one. Maximum likelihood provides a natural formulation for ICA and allows one to take into account multiple statistical properties of the data—forms of diversity. While use of multiple types of diversity allows for additional flexibility, it comes at a cost, leading to high variability in the solution space. In this paper, using simulated as well as fMRI-like data, we provide insight into the trade-offs between estimation accuracy and algorithmic consistency with or without deviations from the assumed model and assumptions such as the statistical independence. Additionally, we propose a new metric, cross inter-symbol interference, to quantify the consistency of an algorithm across different runs, and demonstrate its desirable performance for selecting consistent run compared to other metrics used for the task.  more » « less
Award ID(s):
1631838
PAR ID:
10073511
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Data‐driven methods have been widely used in functional magnetic resonance imaging (fMRI) data analysis. They extract latent factors, generally, through the use of a simple generative model. Independent component analysis (ICA) and dictionary learning (DL) are two popular data‐driven methods that are based on two different forms of diversity—statistical properties of the data—statistical independence for ICA and sparsity for DL. Despite their popularity, the comparative advantage of emphasizing one property over another in the decomposition of fMRI data is not well understood. Such a comparison is made harder due to the differences in the modeling assumptions between ICA and DL, as well as within different ICA algorithms where each algorithm exploits a different form of diversity. In this paper, we propose the use of objective global measures, such as time course frequency power ratio, network connection summary, and graph theoretical metrics, to gain insight into the role that different types of diversity have on the analysis of fMRI data. Four ICA algorithms that account for different types of diversity and one DL algorithm are studied. We apply these algorithms to real fMRI data collected from patients with schizophrenia and healthy controls. Our results suggest that no one particular method has the best performance using all metrics, implying that the optimal method will change depending on the goal of the analysis. However, we note that in none of the scenarios we test the highly popular Infomax provides the best performance, demonstrating the cost of exploiting limited form of diversity. 
    more » « less
  2. Abstract Multimodal neuroimaging research plays a pivotal role in understanding the complexities of the human brain and its disorders. Independent component analysis (ICA) has emerged as a widely used and powerful tool for disentangling mixed independent sources, particularly in the analysis of functional magnetic resonance imaging (fMRI) data. This paper extends the use of ICA as a unifying framework for multimodal fusion, introducing a novel approach termed parallel multilink group joint ICA (pmg-jICA). The method allows for the fusion of gray matter maps from structural MRI (sMRI) data to multiple fMRI intrinsic networks, addressing the limitations of previous models. The effectiveness of pmg-jICA is demonstrated through its application to an Alzheimer’s dataset, yielding linked structure-function outputs for 53 brain networks. Our approach leverages the complementary information from various imaging modalities, providing a unique perspective on brain alterations in Alzheimer’s disease. The pmg-jICA identifies several components with significant differences between HC and AD groups including thalamus, caudate, putamen with in the subcortical (SC) domain, insula, parahippocampal gyrus within the cognitive control (CC) domain, and the lingual gyrus within the visual (VS) domain, providing localized insights into the links between AD and specific brain regions. In addition, because we link across multiple brain networks, we can also compute functional network connectivity (FNC) from spatial maps and subject loadings, providing a detailed exploration of the relationships between different brain regions and allowing us to visualize spatial patterns and loading parameters in sMRI along with intrinsic networks and FNC from the fMRI data. In essence, developed approach combines concepts from joint ICA and group ICA to provide a rich set of output characterizing data-driven links between covarying gray matter networks, and a (potentially large number of) resting fMRI networks allowing further study in the context of structure/function links. We demonstrate the utility of the approach by highlighting key structure/function disruptions in Alzheimer’s individuals. 
    more » « less
  3. Chen, D (Ed.)
    One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such as from Landsat-8. In this study, rather than simply masking visual obstructions, we aimed to investigate the role and influence of clouds within the spectral data itself. To achieve this, we employed Independent Component Analysis (ICA), a statistical method capable of decomposing mixed signals into independent source components. By applying ICA to selected Landsat-8 bands and analyzing each component individually, we assessed the extent to which cloud signatures are entangled with surface data. This process revealed that clouds contribute to multiple ICA components simultaneously, indicating their broad spectral influence. With this influence on multiple wavebands, we managed to configure a set of components that could perfectly delineate the extent and location of clouds. Moreover, because Landsat-8 lacks cloud-penetrating wavebands, such as those in the microwave range (e.g., SAR), the surface information beneath dense cloud cover is not captured at all, making it physically impossible for ICA to recover what is not sensed in the first place. Despite these limitations, ICA proved effective in isolating and delineating cloud structures, allowing us to selectively suppress them in reconstructed images. Additionally, the technique successfully highlighted features such as water bodies, vegetation, and color-based land cover differences. These findings suggest that while ICA is a powerful tool for signal separation and cloud-related artifact suppression, its performance is ultimately constrained by the spectral and spatial properties of the input data. Future improvements could be realized by integrating data from complementary sensors—especially those operating in cloud-penetrating wavelengths—or by using higher spectral resolution imagery with narrower bands. 
    more » « less
  4. Abstract There are a growing number of neuroimaging studies motivating joint structural and functional brain connectivity. Brain connectivity of different modalities provides insight into brain functional organization by leveraging complementary information, especially for brain disorders such as schizophrenia. In this paper, we propose a multi-modal independent component analysis (ICA) model that utilizes information from both structural and functional brain connectivity guided by spatial maps to estimate intrinsic connectivity networks (ICNs). Structural connectivity is estimated through whole-brain tractography on diffusion-weighted MRI (dMRI), while functional connectivity is derived from resting-state functional MRI (rs-fMRI). The proposed structural-functional connectivity and spatially constrained ICA (sfCICA) model estimates ICNs at the subject level using a multi-objective optimization framework. We evaluated our model using synthetic and real datasets (including dMRI and rs-fMRI from 149 schizophrenia patients and 162 controls). Multi-modal ICNs revealed enhanced functional coupling between ICNs with higher structural connectivity, improved modularity, and network distinction, particularly in schizophrenia. Statistical analysis of group differences showed more significant differences in the proposed model compared to the unimodal model. In summary, the sfCICA model showed benefits from being jointly informed by structural and functional connectivity. These findings suggest advantages in simultaneously learning effectively and enhancing connectivity estimates using structural connectivity. 
    more » « less
  5. Analysis of time-evolving data is crucial to understand the functioning of dynamic systems such as the brain. For instance, analysis of functional magnetic resonance imaging (fMRI) data collected during a task may reveal spatial regions of interest, and how they evolve during the task. However, capturing underlying spatial patterns as well as their change in time is challenging. The traditional approach in fMRI data analysis is to assume that underlying spatial regions of interest are static. In this article, using fractional amplitude of low-frequency fluctuations (fALFF) as an effective way to summarize the variability in fMRI data collected during a task, we arrange time-evolving fMRI data as a subjects by voxels by time windows tensor, and analyze the tensor using a tensor factorization-based approach called a PARAFAC2 model to reveal spatial dynamics. The PARAFAC2 model jointly analyzes data from multiple time windows revealing subject-mode patterns, evolving spatial regions (also referred to as networks) and temporal patterns. We compare the PARAFAC2 model with matrix factorization-based approaches relying on independent components, namely, joint independent component analysis (ICA) and independent vector analysis (IVA), commonly used in neuroimaging data analysis. We assess the performance of the methods in terms of capturing evolving networks through extensive numerical experiments demonstrating their modeling assumptions. In particular, we show that (i) PARAFAC2 provides a compact representation in all modes, i.e., subjects, time , and voxels , revealing temporal patterns as well as evolving spatial networks, (ii) joint ICA is as effective as PARAFAC2 in terms of revealing evolving networks but does not reveal temporal patterns, (iii) IVA's performance depends on sample size, data distribution and covariance structure of underlying networks. When these assumptions are satisfied, IVA is as accurate as the other methods, (iv) when subject-mode patterns differ from one time window to another, IVA is the most accurate. Furthermore, we analyze real fMRI data collected during a sensory motor task, and demonstrate that a component indicating statistically significant group difference between patients with schizophrenia and healthy controls is captured, which includes primary and secondary motor regions, cerebellum, and temporal lobe, revealing a meaningful spatial map and its temporal change. 
    more » « less